Можно ли повышающий трансформатор использовать как понижающий и как повышающий
Содержание статьи
Повышающий и понижающий трансформатор
В быту и на производстве используется огромное количество различных электронных устройств, приборов и оборудования. Довольно часто для их нормальной эксплуатации требуется повышающий и понижающий трансформатор. Каждый из них работает на основе самоиндукции, позволяющей изменять ток в ту или иную сторону. Само название трансформатора означает изменение или преобразование. Они применяются в основном совместно с электроникой зарубежного производства, рассчитанной на токи, отличающиеся от отечественных стандартов. Кроме того, трансформаторы обеспечивают защиту электрооборудования и оптимизируют его питание, делая работу максимально эффективной.
Функции и работа трансформаторов
В электронике трансформаторы являются незаменимыми устройствами. Однако, для их наиболее эффективной работы, необходимо хорошо представлять себе, что понижает или повышает трансформатор. В зависимости от потребностей, они повышают или, наоборот, понижают величину потенциала в цепочках с переменным током.
С появлением отличающихся трансформаторных устройств стала возможной доставка электричества на значительные дистанции. Заметно снижаются потери на проводах ЛЭП, когда переменное напряжение повышается, а ток – понижается. Это происходит на всей протяженности проводников, соединяющих электростанцию с подключенными потребителями. На каждом конце таких линий напряжения снижаются до безопасного уровня, облегчая работу используемого оборудования.
Какой трансформатор называют повышающим, а какой понижающим, и какая между ними разница
Если отвечать коротко, то прибор выдающий более высокий потенциал, в сравнении со входом, считается повышающим. Если же происходит обратный процесс, и потенциал на выходе меньше, чем на входе, такое устройство будет понижающим. В первом случае вторичная обмотка обладает большим количеством витков, чем на первичная, а во втором, наоборот, в работе применяется вторичная обмотка с меньшим количеством витков. Этим они кардинально отличаются друг от друга.
Можно ли понижающий трансформатор использовать как повышающий
Да, можно. Поскольку для перемены функций достаточно изменить схему соединения обмоток с источником потенциала и нагрузкой. Соответственно, изменится и функциональность понижающего трансформатора.
На практике, с целью повышения эффективности устройства, индуктивность всех обмоток рассчитывается для точных рабочих значений тока и напряжения. Эти показатели должны обязательно сохраняться в исходном состоянии, когда повышающий и понижающий трансформатор изменяют свои функции на противоположные.
Как определить принадлежность той или иной обмотки
Конструктивно, трансформаторы выполнены по такому принципу, что невозможно сразу определить их различия, то есть, какие провода называется и фактически являются первичной, а которые из них – вторичной обмоткой. Поэтому, чтобы не запутаться, применяется маркировка. Для высоковольтной обмотки предусмотрен символ «Н», в понижающих устройствах она служит первичной, а в повышающих – вторичной обмоткой. Обмотка с низким вольтажом маркируется символом «Х».
Для того чтобы понять особенности, отличие и принцип действия каждого из этих устройств, их следует рассмотреть более подробно.
Общее устройство и функционирование трансформаторов понижающего типа
Трансформаторы выполняют преобразование более высокого входящего напряжения в низкую характеристику напряжения на выходе, то есть позволяют понизить большие токи до требуемых значений. При необходимости такой прибор может использоваться как повышающий.
Принцип действия этих приборов определяется законом электромагнитной индукции. Стандартная конструкция состоит из двух обмоток и сердечника. Первичная обмотка соединяется с источником питания, после чего вокруг сердечника происходит генерация магнитного поля. Под его воздействием во вторичной обмотке возникает электрический ток с определенными заданными параметрами напряжения.
Выходная мощность определяется по количественному соотношению витков в каждой катушке. Изменяя этот показатель можно управлять характеристиками выходного напряжения и получать требуемый ток для бытового и промышленного оборудования.
С помощью лишь одних трансформаторов невозможно изменить частоту электрического тока. Для этого конструкция понижающего аппарата дополняется выпрямителем, изменяющим частоту тока в диапазоне требуемых значений. Современные приборы дополняются полупроводниками и интегральными схемами с конденсаторами, резисторами, микросхемами и другими компонентами. В результате, получается устройство с незначительными размерами и массой, но достаточно высоким уровнем КПД, работающее на понижение напряжения.
Такие трансформаторы функционируют очень тихо и не подвержены сильному нагреву. Мощность выходного тока может выставляться путем регулировок и отличаться в каждом случае. Все устройства нового типа оборудованы защитой от коротких замыканий.
Понижающий трансформатор отличается простой и надежной схемой, широко применяются на подстанциях между отрезками линий электропередачи. Они выполняют понижение сетевого тока с 380 до 220 вольт. Подобные устройства относятся к промышленным. Используемые в быту, отличаются более низкими мощностями. Принимая на первичную обмотку входа 220 В, они затем выдают пониженное напряжение от 12 до 42 вольт в соответствии с подключенными потребителями. Коэффициент трансформации понижающих устройств всегда ниже единицы. Для того чтобы его определить, нужно знать соотношение между количеством витков в первичной и вторичной обмотке.
Особенности повышающего трансформатора
Повышающие трансформаторные устройства, как их называют специалисты, также используются в быту и на производстве. В основном их назначение – работа по своему профилю на проходных электростанциях. Они должны повысить ток в соответствии с нормативными показателями, поскольку в процессе транспортировки происходит постепенное снижение высокого напряжения в ЛЭП. В конце пути следования электростанция с помощью повышающего трансформатора напряжение поднимается до нормативных 220 В и поставляется в бытовые сети, а 380 В – в промышленные.
Работа трансформатора повышающего типа осуществляется по следующей схеме, включающей в себя несколько этапов:
- Вначале на электростанции производится электрический ток напряжением 12 киловольт (кВ).
- Далее по ЛЭП оно поступает на повышающую подстанцию и попадает в повышающий трансформатор, преобразующий это напряжение до 400 кВ. Отсюда ток поступает в высоковольтную ЛЭП и уже по ней приходит на понижающую подстанцию, где его напряжение вновь становится 12 кВ.
- На последнем этапе ток оказывается в низковольтной линии, в конце которой установлен еще один трансформатор понижающего действия. Здесь напряжение окончательно принимает рабочее значение 220 или 380 В и в таком виде поступает в бытовую или промышленную сеть.
Принцип работы повышающего трансформатора также основан на электромагнитной индукции. Основная конструкция состоит их двух катушек с разным количеством витков и изолированного сердечника.
Низкое переменное напряжение поступает в первичную обмотку и вызывает появление магнитного поля, возрастающего при оптимально подобранном соотношении обмоток. Под его влиянием во вторичной обмотке образуется электрический ток с повышенными показателями – 220 В и более. В случае необходимости изменения частоты, в цепочку дополнительно устанавливается преобразователь, способный выдавать постоянный ток для определенных видов оборудования.
В процессе работы трансформаторы нагреваются, поэтому им требуется использовать охлаждение, которое может быть масляным или сухим. Трансформаторные масла относятся к пожароопасным веществам, поэтому такие системы оборудуются дополнительной защитой. Сухие трансформаторы заполняются специальными негорючими веществами. Они безопасны в эксплуатации, но стоят значительно дороже.
Источник
2. Повышающие и понижающие трансформаторы | 9. Трансформаторы | Часть2
2. Повышающие и понижающие трансформаторы
Повышающие и понижающие трансформаторы
До сих пор мы с вами рассматривали трансформаторы, у которых первичная и вторичная обмотки имели одинаковую индуктивность, давая примерно одинаковые уровни напряжения и тока в обоих цепях. Однако, равенство напряжений и токов между первичной и вторичной обмотками трансформатора не является нормой для всех трансформаторов. Если индуктивности двух обмоток имеют разную величину, происходит нечто интересное:
transformer
v1 1 0 ac 10 sin
rbogus1 1 2 1e-12
rbogus2 5 0 9e12
l1 2 0 10000
l2 3 5 100
k l1 l2 0.999
vi1 3 4 ac 0
rload 4 5 1k
.ac lin 1 60 60
.print ac v(2,0) i(v1)
.print ac v(3,5) i(vi1)
.end
freq v(2) i(v1)
6.000E+01 1.000E+01 9.975E-05 Primary winding
freq v(3,5) i(vi1)
6.000E+01 9.962E-01 9.962E-04 Secondary winding
Обратите внимание на то, что вторичное напряжение примерно в десять раз меньше первичного (0,9962 вольт против 10 вольт), а вторичный ток примерно в десять раз превышает первичный (0,9962 мА против 0,09975 мА). В этом SPICE моделировании описано устройство, которое в десять раз понижает напряжение и в десять раз повышает ток.
Трансформатор — это очень полезное устройство. С его помощью мы легко можем повысить или понизить напряжение и ток в цепях переменного тока. Появление трансформаторов сделало практической реальностью передачу электроэнергии на большие расстояния. Трансформаторы позволяют уменьшить потери на проводах линий электропередач (соединяющих генерирующие станции с нагрузками) путем повышения переменного напряжения и понижения переменного тока. На обоих концах (как на генераторе, так и на нагрузках) трансформаторы понижают уровни напряжения до более безопасных значений и снижают стоимость применяемого оборудования. Трансформатор, который на выходе (во вторичной обмотке) вырабатывает более высокое напряжение, чем приложено на входе (к первичной обмотке), называется повышающим трансформатором (его вторичная обмотка имеет больше витков, чем первичная). И наоборот, понижающий трансформатор вырабатывает на своем выходе меньшее напряжение, чем подается на его вход, поскольку его вторичная обмотка имеет меньшее число витков по сравнению с первичной.
Посмотрите еще раз на фотографию, показанную в предыдущей статье:
На поперечном разрезе трансформатора хорошо видно первичную и вторичную обмотки.
Это понижающий трансформатор, о чем свидетельствует большое количество витков первичной обмотки и малое число витков вторичной обмотки. Он преобразует высокое напряжение и маленький ток в низкое напряжение и большой ток. Благодаря большому току вторичной обмотки, в ней используется провод большого сечения. Первичная обмотка, ток в которой имеет небольшую величину, может быть выполнена из провода меньшего сечения.
Любой из рассмотренных типов трансформаторов можно использовать по противоположному назначению (подключить вторичную обмотку к источнику переменного напряжения, а первичную обмотку — к нагрузке). В этом случае трансформатор будет выполнять противоположную функцию: понижающий трансформатор будет функционировать как повышающий, и наоборот. Однако, для эффективной работы трансформатора индуктивности каждой из его обмоток должны быть спроектированы под конкретные рабочие диапазоны напряжения и тока (этот вопрос рассматривался в предыдущей статье). Поэтому, при использовании трансформатора по «противоположному» назначению, напряжения и токи его обмоток должны оставаться в исходных конструктивных параметрах. Только в этом случае трансформатор будет эффективен (и не будет поврежден чрезмерным напряжением или током!).
Трансформаторы часто имеют такую конструкцию, что не очевидно, какие провода принадлежат к первичной обмотке, а какие к вторичной. Во избежание путаницы, на многих трансформаторах (в основном импортного производства) используется обозначение «Н» для высоковольтной обмотки (первичная обмотка в понижающем трансформаторе, вторичная обмотка в повышающем трансформаторе), и обозначение «X» для низковольтной обмотки. Поэтому простой силовой трансформатор будет иметь провода с надписью «h2», «H2», «X1» и «X2».
Если вы вспомните, что мощность равна произведению напряжения и тока, то поймете почему напряжение и ток всегда движутся в «противоположных направлениях» (если напряжение увеличивается, то ток уменьшается, и наоборот). Вы так же поймете, что трансформаторы не могут производить энергию, они могут только преобразовывать ее. Любое устройство, которое могло бы произвести больше энергии, чем потребило, нарушило бы Закон сохранения энергии (энергия не может быть создана или уничтожена, она может быть только преобразована).
Практическая значимость вышесказанного становится более очевидной, когда рассматривается альтернатива: до появления эффективных трансформаторов, преобразование уровней напряжения и тока могло быть достигнуто только за счет использования установок, содержащих моторы и генераторы:
Установка мотор/генератор иллюстрирует основной принцип трансформатора
В этой установке мотор механически соединен с генератором. Генератор предназначен для получения желаемых уровней напряжения и тока за счет скорости вращения мотора. В то время, как и мотор и генератор являются достаточно эффективными устройствами, использование их в связке не обладает достаточной эффективностью, так что общий КПД установки находится в диапазоне 90% или менее. Кроме того, движущиеся части данных установок подвержены трению и механическому износу, а это, в свою очередь, влияет как на срок службы, так и на производительность. Трансформаторы же, с другой стороны, способны преобразовывать переменное напряжение и ток с очень высокой эффективностью без движущихся частей, что делает возможным широкое распространение и использование электроэнергии, которую мы считаем само собой разумеющимся.
Справедливости ради стоит сказать, что установки мотор/генератор не обязательно являются устаревшими в сравнении с трансформаторами во всех сферах применения. Если трансформаторы явно превосходят моторы/генераторы в преобразовании переменного напряжения и тока, то они не могут преобразовать одну частоту переменного тока в другую, а также преобразовать (сами по себе) постоянное напряжение в переменное или наоборот. Установки мотор/генератор могут все это делать относительно просто, хотя и с некоторыми ограничениями эффективности, описанными выше. Эти установки также обладают уникальным свойством сохранения кинетической энергии: то есть, если по какой-либо причине источник питания мотора мгновенно отключается, его угловой момент (инерция вращательного движения) будет еще некоторое время поддерживать вращение генератора, изолируя тем самым нагрузку (питаемую генератором) от «сбоев» в основной энергосистеме.
При внимательном просмотре цифр в SPICE анализе вы должны увидеть соотношение между коэффициентом трансформации и двумя индуктивностями. Обратите внимание на то, что первичная обмотка (l1) имеет в 100 раз большую индуктивность, чем вторичная (10000 Гн против 100 Гн), и что напряжение было понижено с 10 В до 1 В (в 10 раз). Обмотка с большей индуктивностью имеет более высокое напряжение и меньший ток. Поскольку обе обмотки трансформатора намотаны вокруг одного и того же сердечника (для наиболее эффективной магнитной связи между ними), параметры, влияющие на их индуктивность равны, за исключением количества витков в каждой из обмоток. Если мы еще раз взглянем на формулу индуктивности, то увидим, что индуктивность катушки пропорциональна квадрату числа ее витков:
Таким образом, должно быть очевидно, что две обмотки трансформатора в вышеприведенном SPICE моделировании при соотношении их индуктивностей 100 : 1 должны иметь соотношение витков провода 10 : 1, так как 10 в квадрате равно 100. Поскольку соотношение витков соответствует соотношению между первичным и вторичным напряжениями и токами (10 : 1), мы можем сказать, что коэффициент трансформации напряжения и тока равен соотношению витков провода между первичной и вторичной обмотками.
Повышающее / понижающее действие соотношения витков обмоток в трансформаторе аналогично соотношениям шестеренок в механических редукторных системах, которые преобразуют значения скорости и крутящего момента во многом таким же образом:
Повышающие и понижающие трансформаторы, применяющиеся для распределения электроэнергии, могут иметь гигантские размеры (сопоставимые с размером дома). На следующей фотографии показан трансформатор подстанции высотой около четырех метров:
Обзор:
- Трансформаторы «повышают» или «понижают» напряжение в соответствии с соотношениями витков первичных и вторичных обмоток.
- Коэффициент трансформации напряжения равен квадратному корню из отношения индуктивности первичной обмотки к индуктивности вторичной обмотки.
Источник
Повышающий DC-DC преобразователь постоянного напряжения — простой выход из сложной ситуации
Для какого-либо устройства цепи постоянного тока может понадобится получить напряжение питания, превышающее напряжение питания самой цепи. Например, электрическая схема получает питание 5 вольт. А одно из устройств, расположенных на этой схеме нуждается в питании 12 вольт. Как быть в такой ситуации? Ведь в случае применения постоянного тока невозможно использовать трансформатор. Подключать второй источник питания? Или питать всю схему от источника в 12 вольт, понижая их до 5 вольт для большинства компонентов? Оба варианта являются не очень выгодными и актуальными.
Упрощенная схема повышающего DC-DC преобразователя показывающая принцип его работы
На этот случай и существуют повышающие DC-DC преобразователи постоянного тока. Обычно они представляют собой готовые специализированные схемы. Разумеется, существует не один способ повышения напряжения постоянного тока. Но один из самых простых способов представляет собой использование катушки индуктивности. Конечно, в схеме кроме катушки индуктивности применяются и другие элементы. Однако их количество может быть очень небольшим. Самое простое устройство повышающего DC-DC преобразователя, на котором можно объяснить принцип его работы, включает в себя всего несколько компонентов. Это — аккумулятор, дроссель, конденсатор и диод. А также, в цепи находится ключ (переключатель). Разумеется, в реальной схеме ключом является транзистор. А управляет открытием и закрытием этого транзистора специальная микросхема-контроллер.
1) В первый момент для начала работы ключ замыкается. Так как для постоянного тока катушка индуктивности имеет очень малое сопротивление, то в цепи должен протекать ток короткого замыкания. То есть, в данном случае в цепи должен протекать ток очень большой силы. Но практически в первый момент сила постоянного тока, протекающего в цепи, будет нулевой. Считается, что такое происходит потому, что вся энергия протекающего тока идет на образование электромагнитного поля вокруг катушки. То есть, сила тока тратится на запасание энергии в виде электромагнитного поля. Через некоторый короткий промежуток времени, когда электромагнитное поле будет полностью сформировано, сила тока начнет расти. И постепенно повысится до номинального значения. Но мы не дожидаемся этого момента и разрываем цепь ключом.
Ключ замкнут и дроссель накапливает энергию
2) Ключ разомкнут. В этот момент на выводах катушки образуется напряжение превышающее напряжение источника питания. Обычно считается, что это происходит потому, что электромагнитное поле вокруг катушки уменьшается. То есть, часть накопленной энергии электромагнитного поля поступает на выводы дросселя. А так как сила тока стремилась дорасти до больших значений, то электромагнитное поле запасло изрядное количество энергии. Достаточное для того, чтобы на выводах дросселя было напряжение выше, чем на источнике питания. Электрический ток повышенного напряжения течет через диод на нагрузку. А часть заряда накапливается в конденсаторе. Но без дополнительных мероприятий напряжение не может быть всегда повышенным. Потому нам нужно снова запасти энергию на дросселе. Для этого нужно опять замкнуть ключ.
Ключ разомкнут. Электрический ток повышенного напряжения течет через диод на нагрузку. А часть заряда накапливается в конденсаторе
Итак, замыкаем ключ. Катушка опять начинает запасать энергию, формируя электромагнитное поле. А нагрузка в этот момент питается энергией запасенной в конденсаторе. Диод не позволяет току из конденсатора вернутся обратно.
Ключ замкнут. Катушка опять начинает запасать энергию. Нагрузка в этот момент питается энергией запасенной в конденсаторе
Опять размыкаем ключ. Электрический ток повышенного напряжения опять течет через диод на нагрузку. Часть заряда запасается в конденсаторе. И эти циклы повторяются снова и снова. Чем более длинные импульсы создает транзистор, тем больше дроссель запасает энергии, насыщая свое электромагнитное поле. Значит и напряжение на выводах дросселя будет выше.
Ключ разомкнут и цикл повторяется снова
Так как протекание тока состоит из множества коротких импульсов, то в цепи должен течь пульсирующий ток. Но благодаря наличию в схеме конденсатора импульсы тока сглаживаются, выпрямляются. Пока ключ замкнут и ток с дросселя не течет на нагрузку, нагрузку питает конденсатор. То есть, конденсатор, образно говоря, корректирует провалы между импульсами тока. В результате, на нагрузку поступает выпрямленный электрический ток с повышенным напряжением.
Готовые схемы повышающих DC-DC преобразователей постоянного тока
Потому как ничего из ничего не получается, то и в данном случае соблюдается равенство мощностей нагрузки и источника питания. Иначе говоря, если нагрузка потребляет 12 вольт и 0,5 ампера, то аккумулятор 5 вольт должен выдать ток силой, например, 1,5 ампера. Если мощности источника питания будет недостаточно, то для нагрузки в 12 вольт будет поступать очень сильно пульсирующий ток. То есть, нагрузка будет потреблять заряд с конденсатора быстрее, чем он будет заряжаться от аккумулятора.
Для вашего удобства подборка публикаций
Что такое якорь и индуктор и чем они отличаются от ротора и статора?
Преобразователь напряжения 12/220 вольт (инвертор) — принцип работы
Что такое фаза, ноль и земля в электротехнике
Главная страница
Спасибо за посещение канала, чтение заметки, упоминание в социальных сетях и других интернет — ресурсах, а также подписку, лайки, дизлайки и комментарии (Лайки и дизлайки можно ставить не регистрируясь и не заходя в аккаунт)
Источник