Можно ли получить перегретый пар над поверхностью жидкости
Содержание статьи
Что такое насыщенный и перегретый пар
Термины насыщенный пар и перегретый пар относятся к термодинамическому состоянию воды. Вода и пар являются средами, используемыми для теплообмена в котловых установках благодаря своей доступности и высокой теплоемкости. Особенно эффективно передавать тепло посредством испарения и конденсации воды, которая обладает большой скрытой теплоты испарения.
Насыщенный пар (НП) и перегретый пар (ПП) относятся к определенному давлению среды. Первый НП может существовать во влажном и сухом состоянии, а перегретый ПП — только в сухом, поскольку не может содержать в своем составе частиц воды.
Чаще всего эти понятия применяются в теплоэнергетике, для расчета термодинамических циклов в контуре парового котла и в паровых турбинах, генерирующих электрическую энергию на ТЭЦ, ТЭС, ГРЭС и АЭС.
Что такое насыщенный пар
Водяной пар, пребывающий в термодинамическом равновесии с котловой водой, является насыщенным. Это формулировка дает понимание того, что давление насыщенного пара при температуре может иметь только одно значение
В котлоагрегатах парообразование протекает при постоянном давлении и подводе тепла к котловой воде от уходящих газов. Этот процесс базируется на следующих последовательных стадиях: подпитка котла водой, подогрев ее до температуры точки насыщения, и образование сухого насыщенного пара, когда вся жидкость испаряется из него.
В паровых котлах питательная вода, пройдя через экономайзер, попадает в барабан. Из него более холодные потоки под воздействием силы тяжести опускаются по необогреваемым трубам, а поднимаются по подъёмным топочным экранам обогреваемые более горячими дымовыми газами.
Здесь начинается процесс парообразования, поскольку температура воды достигает значения точки насыщения при рабочем давлении в котлоагрегате.
Плотность пароводяной смеси в экранных пакетах уменьшается и становится ниже плотности воды в опускных трубах, что создает напор для движения пароводяной смеси по экранам в барабан, где смесь сепарируется на воду и пар.
В закрытой поверхности нагрева при не меняющейся температуре в точке насыщения устанавливается термодинамическое равновесие между котловой водой и водяным паром. Число молекул пара, выделяющихся из поверхности воды за определенное время, будет равняться числу молекул сконденсированного пара, которые перейдут обратно в воду в барабане котла.
Давление насыщенного пара
Давление насыщения в котле зависит от температуры котловой воды в равновесном термодинамическом состоянии. При росте давления, пар сжимается и баланс нарушается. Плотность пара первоначально несколько возрастает, и из паровой среды в котловую воду будет переходить больше молекул конденсата, чем наоборот.
Поскольку количество молекул, переходящих из воды в единицу времени связано исключительно с температурой, то сжатие паровой среды не будет влиять на изменение этого числа.
Процесс будет протекать пока не возникнет термодинамическое равновесие, а следовательно, и концентрация возвращающихся молекул не достигнет первоначального уровня. Таким образом, Тнп напрямую зависит от давления насыщения в котле.
Таблица насыщенного пара
Характеристики сухого НП, приводятся в Таблице водяного пара. В ней указывают Т (С), при точке кипения котловой воды и давление (кПа и мм. рт.ст.) при которой этот процесс протекает.
Дополнительно в таблице могут указываться и другие параметры пара:
- eдельный объем, м3/кг;
- плотность, кг/м3;
- удельная энтальпия, кДж/кг
- удельная теплота парообразования, кДж/кг.
Плотность насыщенного пара
Плотность НП определяют по формуле.
D st = 216,49 * P / (Z st * (t + 273))
Где:
- D st — плотность насыщенного пара в кг / м3;
- P- абсолютное давление пара в барах;
- t — температура в градусах Цельсия;
- Z st — коэффициент сжимаемости насыщенного пара при Р и t.
В этом уравнении символ «Z st» обозначает коэффициент сжимаемости насыщенного пара при абсолютной величине давления насыщенного водяного пара P, бар. Это удобное уравнение действительно для диапазона давления пара от 0,012 до 165 бар, с соответствующим диапазоном температур насыщения от 10 до 360 С.
Влажность насыщенного пара
Когда котлоагрегат нагревает воду, пузырьки, прорывающиеся через слой воды, захватываются паром. Влажный пар определяется как пар, в котором вода присутствует в виде микрокапель паров воды. В этом случае соотношение может составлять от 0 до 1. Если пар имеет 20 % воды по объему — он считается сухим на 80% или имеет долю сухости 0,8.
Таблицы НП содержит значения, такие как температура, энтальпия и удельный объем для сухого НП, но не для влажного. Для того чтобы их определить потребуется воспользоваться формулами, учитывая соотношение двух сред:
Удельный объем (v) мокрого пара
v = X * v g + (1 — X) * v f
Где:
- X = сухость (% / 100);
- v f = удельный объем жидкости;
- v g = удельный объем НП.
Удельная энтальпия пара сухостью Х:
h = h f + X * h fg
Где:
- X = сухость (%);
- h f = удельная энтальпия жидкости;
- h fg = удельная энтальпия НП.
Чем влажнее пар, тем ниже значения удельного объема, теплосодержание, энтальпия и энтропия. Таким образом сухость пара оказывает существенное влияние на все эти значения.
Задачей теплоэнергетиков является организация процессов парообразования в котле с сухостью 100%. Для этого в барабанах котлов устанавливают специальные сепарационные устройства, отделяющие пар от воды.
Перегретый пар
Перегретый пар — это пар с температурой, превышающей его температуру кипения при абсолютном давлении, при котором проводились измерение температуры. Давление и температура перегретого пара не зависят друг от друга, поскольку температура может увеличиваться, в то время как давление остается постоянным.
Процесс перегрева водяного пара на диаграмме Ts представлен на рисунке между состоянием E и кривой насыщенного пара. Чтобы оценить тепловую эффективность цикла, энтальпия должна быть получена из таблиц перегретого пара.
Процесс перегрева — единственный способ увеличить пиковую температуру цикла Ренкина и повысить эффективность без увеличения давления в котле. Это требует добавления в конструкцию котла особого теплообменника, называемого пароперегревателем.
В пароперегревателе дальнейший нагрев при фиксированном давлении приводит к увеличению, как температуры, так и удельного объема. Наибольшее значение перегретого пара заключается в его огромной внутренней энергии, которая может быть использована для кинетической реакции для движения лопастей турбины, создающих вращательное движение вала.
Температура перегретого пара
Характеристики перегретого пара (ПП) аналогичны идеальному газу, но не равны насыщенному пару. Поскольку ПП не обладает зависимостью между температурой и давлением, при конкретном давлении он может вырабатываться в широком температурном диапазоне, что будет зависеть от площади нагрева пароперегревателя.
Перегретый пар отличается от насыщенного такими преимуществами:
- gри равном давлении насыщения он обладает намного большей температурой;
- обладает большим удельным объемом, что дает экономию энергоресурсов при использовании;
- при снижении он не конденсируется, пока температура не упадет ниже точки насыщения при давлении среды.
Методы регулирования температуры перегретого пара
Довольно часто для технологических процессов, требуется получение перегретого пара строго определенной температуры. Для того чтобы снять ее излишки, обычно используют три метода воздействия на температуру ПП:
- cмешивание разных температурных потоков, когда в ПП впрыскивают котловую воду или паровой теплоноситель меньшего теплосодержания;
- поверхностное охлаждение, заключается в перенаправление ПП через систему специальных теплообменных аппаратов, выполняющих роль охладителей;
- изменение тепловосприятия потока, реализуется через изменение температуры или расхода уходящих котловых газов.
В теплоэнергетике в котлах высокого давления наиболее часто применяют первый метод, путем впрыскивания в поток ПП питательной воды или конденсата от турбогенератора. Впрыском насыщенного пара, как правило, регулируют температуру вторичного перегрева пара.
Получение перегретого пара
Пароперегреватель устройство, устанавливаемый в котлоагрегате, вырабатывает перегретый пар с параметрами, превышающими температуру насыщения в барабане котла. Он относится к особо критичным котловым элементам, поскольку из-за высоких температур ПП металл конструкции функционирует в предельно-допустимых условиях.
Пароперегреватели бывают основного типа, работающие в зоне сверхкритического давления и промежуточного типа, которые направляют пар отработанный в турбине для промперегрева.
Кроме того пароперегреватели классифицируются по тепловосприятию на конвективные, установленные в конвективной части котла, радиационные — расположены около топочных экранов и ширмовые — установленные в верхней части топки. По направлению движения потоков ПП и уходящих котловых газов выпускают ПП : прямоточные, противоточные и смешанные.
Использование перегретого пара в технике
В современных паровых турбинах применяют ПП с температурой перегретого пара существенно выше критической (374C).
Перегретый пар используется в турбинах для повышения теплового КПД. Другое использование перегретого пара:
- Пищевые технологии.
- Технологии очистки.
- Катализ / химическая обработка.
- Технологии поверхностной сушки.
- Технологии отверждения.
- Энергетика.
- Нанотехнологии.
Котлы перегретого пара
В России применяется ГОСТ 3619-76 на паровые котлоагрегаты, в котором установлены параметры насыщенного и перегретого пара, а также паровая производительность и температура воды для питания котла.
Современная российская энергетика использует котлоагрегаты производительностью вырабатывающих 1000/1650/2650/3950 т/ч пара для турбогенераторов соответствующей мощностью 300/500/800/1200 МВт, работающих на сверхкритических параметрах по давлению 25,5 МПа и Тпп=545С.
Схема котла с пароперегревателем
Энергетические котлы классифицируются по давлению пара — высокого от 10 до 14 МПа и сверхкритического свыше 25,5 МПа. Котлоагрегаты сверхвысокого давления, обычно, выполняют с вторичным перегревом пара.
Паровые котлоагрегаты малой и средней паропроизводительности используются для производства насыщенного и перегретого пара с характеристиками до 3,9 МПа и Т=450 С. Они эксплуатируются на промпредприятиях и в жилищно-коммунальном хозяйстве для производственно-технологических нужд и в системах центрального теплоснабжения.
Типичными представителями агрегатов данной категории являются котел Е (ДЕ) производительностью пара от 1 до 25 т/ч, Е (КЕ) производительностью пара до 25 т/ч с газомазутной горелкой и ДКВР производительностью до 20 т/ч. Их применение — источники тепловой энергии для центрального теплоснабжения с параметрами насыщенного и перегретого пара.
Источник
Парообразование: насыщенный и перегретый пар
В начале процесса нагрева воды, при достижении температуры 100°С на дне емкости (сосуда, прибора, котла) постепенно образуются пузырьки пара, которые поднимаясь вверх, не достигая поверхности, конденсируются в верхних более холодных, еще не прогретых до 100°С слоях воды. Через некоторое время, когда температура всего объема воды в сосуде повышается до 100°С, пузырьки пара начинают достигать верхнего слоя воды. То есть начинает происходить процесс кипения и испарения. При этом температура исходящего пара также составляет 100°С.
При увеличении подвода тепловой энергии интенсивность парообразования будет увеличиваться (количество пузырьков пара станет больше), но температура воды и выделяющегося пара будет прежней — 100°С, т.к. атмосферное давление останется неизменным. Напомним, что при атмосферных условиях (давление 1013 мбар) вода имеет температуру испарения 100°С. Но для простоты расчетов принято округлять значение давления до 1 бар (1000 мбар).
Вода на стадии испарения (при достижении температуры 100°С в атмосферных условиях) не может более принимать энергию, не изменив свое агрегатное состояние. Энтальпия (теплосодержание) воды, находящейся в данном состоянии определяется, как ее тепловая энергия насыщения и обозначается как h’.
Если нагреваемый сосуд — закрытого типа, вода и пар могут находиться в состоянии динамического равновесия, при котором число молекул воды, превращающихся в пар, равно числу молекул, конденсирующихся обратно в воду (скорости процессов парообразования и конденсации одинаковы). При этом пар, находящийся в данном состоянии, называется насыщенным.
Чтобы продолжить процесс испарения и добиться полного испарения воды, необходимо передать ей больше энергии, чем тепловая энергия насыщения. Указанная энергия — это теплота парообразования r. Общая энтальпия полученного пара обозначается h» и определяется как:
h»=h’+r
1 кг пара при температуре 100°С обладает тепловой энергией примерно в 6 раз большей, чем 1 кг воды при 100°С. Когда пар с температурой 100°С отдает тепловую энергию, образуется конденсат. То есть процесс конденсации 1 кг пара, имеющего температуру 100°С, будет сопровождаться высвобождением тепловой энергии, которая будет в 6 раз больше, чем присутствует в воде с теми же параметрами. Количество теплоты, выделяемое при конденсации пара, называется тепловой энергией парообразования. Полученный при этом конденсат имеет такую же температуру, как и пар, из которого он был получен.
Значение температуры насыщения пара находится в прямой зависимости от давления пара в сосуде. От давления пара также зависят такие величины, как тепловая энергия насыщения и парообразования, энтальпия и удельный объем. Значения указанных параметров, соответствующих определенному давлению пара, приведены в Таблице насыщенного пара.
В таблице представлены следующие данные:
— температура насыщенного пара (ts, С), которая определяет точку кипения воды при определенном давлении. Значение указанной температуры также определяет температуру конденсации пара;
— удельный объем (v», м3/кг) — объем, занимаемый единицей массы вещества. Величина удельного объема находится в обратной зависимости от увеличения давления пара;
— удельный вес (po, кг/м3), который показывает массу пара, выраженного в килограммах, содержащегося в 1 м3 объема. Удельный вес увеличивается при увеличении давления;
— энтальпия насыщения (h’, кДж/кг) — показатель количества тепловой энергии, которая необходима для доведения до кипения 1 кг воды при определенном давлении или количество тепловой энергии, которое содержит конденсат, сконденсированный из 1 кг пара при том же давлении. Чем выше давление пара, тем больше тепловой энергии несет конденсат;
— суммарная энтальпия пара (h», кДж/кг);
— тепловая энергия парообразования (конденсации) (r, кДж/кг) — показатель количества тепловой энергии, требуемой для полного испарения 1 кг воды при определенном давлении или количество тепловой энергии, высвобождаемое при конденсации насыщенного пара при этом же давлении. При повышении давления количество тепловой энергии, которая требуется для полного испарения воды, уменьшается. А при конденсации такого насыщенного пара, соответственно, выделяется меньше энергии.
Для наглядности приведем пример расчета:
Сколько тепловой энергии необходимо, чтобы нагреть 10 м3 (10 000 кг) воды температурой 15°С до 90°С и какое количество пара необходимо для этого, при давлении пара в теплообменнике — 6 бар?
Удельная теплоемкость воды — 4,2 кДж/кг х К.
Сделаем расчет требуемого количества тепловой энергии:
А) Количество среды х перепад температуры х удельная теплоемкость = 10 000 х (90-15) х 4,2 = 3150000 кДж. При давлении 6 бар тепловая энергия конденсации — 2085 кДж/кг.
Б) Требуемое количество пара для нагрева воды: 3150000 / 2085 = 1511 кг. При этом температура конденсата, который будет отводиться через конденсатоотводчик из паровой сети, составит 159°С.
Пар, который имеет температуру и энтальпию при определенном давлении выше указанного в Таблице насыщенного пара, называется перегретым. Например, пар с давлением 9 бар и температурой 190°С является перегретым. Перегретый пар обладает меньшими теплопередающими свойствами по сравнению с насыщенным паром. Если перегретый пар используется в качестве теплоносителя, то значительная часть поверхности теплообмена будет использована для его охлаждения до температуры насыщенного пара. Как правило, перегретый пар используется в качестве энергоносителя паровых турбин.
При равном давлении удельный объем насыщенного пара значительно меньше, чем перегретого. Поэтому при переходе пара из насыщенного состояния в перегретое необходимо обращать внимание на уменьшение пропускной способности трубопроводов. Редуцируя (снижая) давление, насыщенный пар с давлением меньше 31 бар может перейти в перегретое состояние. При этом обмена тепловой энергии не происходит и никакая работа не производится.
С помощью h-t-p диаграммы, представленной ниже можно наглядно показать процессы испарения, конденсации, парообразования и т.д
К примеру, рассмотрим процесс редуцирования давления пара со 120 до 50 бар. Согласно диаграмме точка пересечения с линией давления 50 бар находится в зоне парообразования/конденсации. Часть пара будет конденсироваться, т.к. энтальпия насыщенного пара при давлении 120 бар — 2689,2 кДж/кг меньше, чем энтальпия пара с давлением 50 бар -2794,2 кДж/кг. Пересечение находится в зоне линии х=0,9 — значит 10% пара будет сконденсировано и пар станет «влажным».
Источник
Физика Русской бани. Перегретый или насыщенный пар при подготовке бани
Физика Русской бани. Перегретый или насыщенный пар при подготовке бани
Интродуцион.
«Айн унд цванцих, фир унд фирцих!», что в переводе с греческого обозначает, что имеем, тем и греем.
Пошли слухи, что некоторые на Западе стали греть парные перегретым паром и этим гордятся.
Хочу разъяснить свою точку зрения по поводу: каким паром греть парную и изложить аргументы о том как воздействуют два вида пара на окружение парной Русской бани. Начнем изучать свойства пара, применительно к Русской бане.
1 Я самый умный Пар — это наше фсе!
Насыщенный пар
Если нагревать воду в открытом сосуде, то температура ее будет постепенно повышаться, пока не достигнет примерно 100 С, после этого дальнейшее повышение температуры прекращается и начинается кипение воды, то есть бурный переход ее в парообразное состояние. Температура воды во время кипения остается одной и той же, так же как температура получающегося над водой пара; она равна точно 100 С при нормальном атмосферном давлении, равном давлению ртутного столба 760 мм высотой.
Когда температура воды приближается к точке кипения, некоторые молекулы получают достаточное количество
кинетической энергии для достижения скоростей, которые позволяют им на мгновение отделиться от жидкости в пространстве над поверхностью, прежде чем вернуться. Дальнейшее нагревание вызывает большее возбуждение и число молекул, желающих покинуть жидкость, увеличивается. При атмосферном давлении температура насыщения составляет 100 °С.
Испарение может происходить не только с поверхности, но и в объеме жидкости. В жидкости всегда имеются мельчайшие пузырьки газа. Если давление насыщенного пара жидкости равно внешнему давлению (т. е. давлению газа в пузырьках) или превышает его, жидкость будет испаряться внутрь пузырьков. Пузырьки, наполненные паром, расширяются и всплывают на поверхность. Этот процесс называется кипением. Таким образом, кипение жидкости начинается при такой температуре, при которой давление ее насыщенных паров становится равным внешнему давлению.
Температура пара над водой, из которой он получается, всегда равна температуре этой воды. Получающийся над водой пар называется насыщенный.
Свойства насыщенного пара
Насыщенный пар обладает тем свойством, что при самом незначительном отнятии теплоты часть пара обращается в воду (конденсируется); вода в виде мельчайших капелек удерживается в паре. Таким образом, практически мы всегда имеем смесь сухого пара и воды (конденсата); такой пар называется влажный насыщенный пар.
Одно из свойств насыщенного пара заключается в том, что при определенном давлении он имеет соответствующие этому давлению температуру, теплосодержание и плотность.
Состав влажного пара принято выражать в весовых частях пара и воды. Вес сухого пара в 1 кг влажного пара называется паросодержанием или степенью сухости и обозначается буковой «х». Значение «х» обычно дают в сотых долях.
Таким образом, если говорят, что у пара «х»=0,95, то это значит, что во влажном паре содержится по весу 95% сухого пара и 5% воды. При «х»=1 насыщенный пар носит название сухого насыщенного пара.
Один килограмм воды при своем испарении дает один килограмм пара; объем получающегося пара зависит от его давления, а следовательно, и от температуры. В противоположность воде, которая по сравнению с газами почти несжимаема, пар может сжиматься и расширяться в очень широких пределах.
Удельный объем, то есть объем 1 кг пара, при давлении 1 атм для сухого насыщенного пара равен 1,425 м3, то есть в 1725 раз больше объема 1 килограмма воды.
Энтальпия пара (теплосодержание) — практически определяется как количество тепла, которое нужно для поучения 1 кг пара данного состояния из 1 кг воды при 00 С, если нагрев происходит при постоянном давлении.
Понятно, что при одной и той же температуре энтальпии пара значительно больше, чем энтальпия воды. Для того чтобы нагреть 1 кг воды от 0 до 100 С, нужно затратить приблизительно 100 ккал тепла, так как теплоемкость воды равна приблизительно единице. Для того же, чтобы превратить эту воду в сухой насыщенный пар, нужно сообщить воде добавочно значительное количество теплоты, которое расходуется на преодоление внутренних сил сцепления между молекулами воды при переходе ее из жидкого состояния в парообразное и на совершение внешней работы расширения пара от начального объема v/ (объем воды) до объема v/ (объема пара).
Это добавочное количество теплоты называется теплота парообразования.
Одновременно с испарением происходит обратный процесс — переход части хаотически движущихся молекул пара в жидкость. Этот процесс называют конденсацией. Если сосуд открытый, то покинувшие жидкость молекулы могут и не возвратиться в жидкость. В этих случаях испарение не компенсируется конденсацией и количество жидкости уменьшается. Когда поток воздуха над сосудом уносит образовавшиеся пары, жидкость испаряется быстрее, так как у молекулы пара уменьшается возможность вновь вернуться в жидкость.
Насыщенный пар высвобождает скрытую теплоту при постоянной температуре, которая равна теплоте парообразования.
Выводы по насыщенному пару:
- Насыщенный пар при соприкосновении с холодными стенами либо воздухом конденсируется и отдает тепло конденсации предмету на котором он конденсируется.
- Насыщенный пар обладает энергией только фазового перехода и небольшой отбор энергии пара превращает его в воду.
- Насыщенный пар высвобождает скрытую теплоту при постоянной температуре. Постоянная температура на всей площади, разделяющей источник теплоты и нагреваемую среду, сохраняется на всем периоде конденсации (фазового перехода), если конденсат устойчиво отводится, не допуская обводнения парового пространства.
- Свойства некрашеной древесины как раз и создают условия отвода влаги, путем ее впитывания по капиллярам внутрь дерева. Пленка воды в этом случае на поверхности дерева не создается достаточно долгое время, до определенного уровня напитывания капилляров дерева. Новые порции конденсирующегося пара передают тепло конденсации древесине. А впитывающаяся в древесину горячая вода, прогревает древесину в глубину.
По этой причине не нужно в парной красить древесину, иначе, она превращается в пластмассу.
Перегретый пар
Если насыщенный пар отвести от поверхности испарения воды в котле и продолжать нагревать его отдельно, то температура пара будет подниматься и объем его увеличиваться.
Энтальпия перегретого пара превышает энтальпию сухого насыщенного пара того же давления на величину, выражающую собой количество теплоты, дополнительно сообщенное пару при перегреве.
Перегревая пар, мы сообщаем ему дополнительную теплоту, то есть увеличиваем начальную энтальпию. Кроме того, перегретый пар при движении в паропроводах не конденсируется в воду, так как конденсация может начаться только с момента, когда температура перегретого пара понизиться на столько, что он перейдет в насыщенное состояние.
Перегретый пар любого давления способен испарять воду из материала, пока не станет насыщенным. Именно это свойство пара используется для сушки материала как в цилиндрах под избыточным давлением и в камерах при атмосферном давлении, так и на открытом воздухе.
Если при постоянном давлении охлаждать безотносительно чистый перегретый пар или в смеси с воздухом, при температуре точки росы пар станет сухим насыщенным, а при дальнейшем охлаждении часть его превратится в воду в виде росы или взвешенных капелек воды диаметром 1-10 мкм.
Наличие в паре воздуха или какого-либо другого неконденсирующегося газа приводит к значительному снижению коэффициента теплоотдачи при конденсации. Примесь газа ухудшает теплоотдачу хотя бы потому, что, согласно закону Дальтона, она уменьшает давление насыщения пара и тем самым используемую разность температур.
Кроме того, следует иметь в виду, что воздух или другой газ не конденсируется, а скапливается у стенки и препятствует доступу пара к ней. Пар в этом случае должен диффундировать через слой неконденсирующегося газа у поверхности конденсации.
Логично предположить, что конденсируясь, перегретый пар передает конденсату теплоту парообразования и теплоту перегрева. Но наблюдения показывают, что в этом случае, при той же температуре стенки и том же давлении, теплоотдача для перегретого пара лишь немногим выше (около 3 %), чем для насыщенного пара. Следовательно, степень перегрева пара играет очень незначительную роль (Циборовский Я. Процессы химической технологии, стр. 471).
Следует сказать, что процессы конденсации перегретого пара мало изучены
Выводы по перегретому пару:
- Чтобы передать тепло конденсации отделке парной, перегретый пар должен пройти следующие фазы:
— остыть до сухого насыщенного;
— пройти процесс конденсации из сухого насыщенного до превращения в конденсат (воду).
- Перегретый пар, пока не остынет до насыщенного, испаряет воду с поверхности. Испарение — это процесс охлаждения поверхности. Получается, что перегретый пар до превращения в насыщенный, охлаждает поверхность соприкосновения.
- В сухом остатке, теплоотдача для перегретого пара лишь немногим выше (около 3 %), чем для насыщенного пара.
Для чего я все это изложил? Чтобы подвести к правильному пониманию, какой пар должна генерировать печь, для эффективного прогрева парной.
Окончательные выводы о качестве пара при прогреве банного помещения:
Из изложенного выше, следует то, что парную нужно прогревать насыщенным паром.
Аргументы за:
- Насыщенный пар, соприкасаясь с отделкой парилки, конденсируется и отдает тепло конденсации поверхности на которой он конденсируется. В случае с некрашеным деревом, влага впитывается и прогревает его глубинно. В этом случае водяная пленка, препятствующая теплообмену не создается, конденсат считается капельным. В случае с керамическим стенами, насыщенный пар конденсируется и отдаёт теплоту конденсации, при этом влага стекает на пол. При наличии на керамике пленки из воды, конденсируясь, нагревает пленку воды, которая в свою очередь прогревает керамику, но уже с потерей части энергии. Получается прогрев тела погруженного в нагретую воду.
- Перегретый пар перед тем, как отдаст теплоту конденсации поверхности, должен пройти несколько стадий:
— остыть до насыщенного пара,
— конденсироваться на поверхности и передать тепло конденсации.
При этом, не нужно забывать, что перегретый пар любого давления способен испарять воду из материала, пока не станет насыщенным. Значит, пока перегретый пар на остынет до насыщенного, он будет делать поверхность сухой и не даст древесине глубинно прогреваться. По этой причине, не нужно красить отделку из древесины в парной, возможно и в мыльной.
- Теплоотдача для перегретого пара лишь немногим выше (около 3 %), чем для насыщенного пара.
ЗЫ
Зачем тратить энергию преобразования топлива для создания перегретого пара в 400 град. для прогрева парной, когда насыщенный пар, с более низкой энергией создания, прогревает парную практически также, как и перегретый пар.
Источник