Можно ли из глины получить алюминий

Как добыть алюминий из глины

Средневековые учёные, постигавшие алхимию, с самого её возникновения стремились узнать секрет создания философского камня, артефакта, способного преобразовывать любой металл в самое настоящее золото. На поиски потратили столько времени, так много технологий проверили, но технология не открылась. Зато алхимия смогла своими изысканиями продвинуть науку вперед, а также дать начало такой современной научной дисциплине, как химия. Вместо своей прабабки-алхимии, химия сегодня предлагает нам шанс пройти по не менее привлекательному пути обогащения. Сегодня рассмотрим технологию химии, позволяющей производить добычу алюминия из глины..

Технология

Ключ к достижению безбедной жизни в достатке, всё это время находился, в буквальном смысле, под ногами. Сегодня речь пойдёт о, так называемой, бокситной глине. Это очень распространённое сырьё. В её составе содержится значительный процент алюминия, который для полного счастья, остаётся лишь только получить из бокситов, применяя описанную здесь технологию. Данный материал можно найти во многих местах. Например, скрывается под слоем грунта в различных котлованах, у берегов рек, озер и вообще вблизи водоёмов.

алюминий из глины

По правде говоря, одним сырьём сыт, конечно, не будешь. Потребуется ещё помещение. Идеальным вариантом, конечно, стали бы площади заводского помещения, дабы сразу получить способность производить масштабный оборот добытого, но в начале сойдёт обычный гараж. Нужных нам результатов достигнем электрическим током.

Необходимые компоненты

Вот список вещей:

  • графитовый порошок
  • металлическая бочка
  • сварочный аппарат
  • бетономешалка
  • бокситная глина

Сегодня, вышеперечисленное, за исключением бокситов, легко можно отыскать среди хозяйственных рынков и магазинов стройматериалов. Так давайте же от праздного теоретизирования перейдём к практике данной технологии. Правда, для старта необходимо найти место, откуда будете брать требуемое сырьё. Подгоните туда машину, которая может перевозить грузы весом полтонны. Именно такое количества бокситов предстоит набрать. Меньше пяти центнеров брать смысла нет. Складывая бокситы, учитывайте свои силы. Теперь отвезите собранное.

Процесс извлечения

1.    Как только привезёте боксит,  будет необходимо её просушить. Можно расстелить газеты, выложить собранное раннее сырьё. После этого взять самый обычный фен. При помощи него займитесь сушкой. Конечно же, куда предпочтительнее использовать с этой целью какой-нибудь серьёзный агрегат для сушки. Когда солнечная погода, подсушивание можно устроить снаружи. Правда стоит помнить о том, что надо следить за тем, чтобы высушенная глина не присохла к чему-нибудь. Для этого поверхность можно посыпать мукой или песком, смотря что у вас под рукой.

2.      Теперь настал момент, чтобы взять бетономешалку! При помощи бетономешалки измельчим высушенное раннее. Бетономешалкой надо довести до состояния песка или даже пыли, так как мелкой крошкой куда быстрее и куда менее затратнее получать металл, чем из крупных кусков. Данный принцип известен химии уже давно. Для тех, кто без бетономешалки, настоящим спасением станет простой молоток. Правда, сил на переработку целой кучи весом пятьсот килограмм уйдет немало. Поэтому стоит позднее задуматься о приобретении бетономешалки.

3.      Пришло время взять купленный графитовый порошок. Сегодня он потребуется для того, чтобы избежать пожароопасной ситуации. Далее предстоит иметь дело с электрическим током. Сопротивление сырья проходящему сквозь неё электрическому току сильно повышает риск возникновения пожара. Обычный графитовый порошок же напротив даёт снижение сопротивления, помогает контролировать регулирование температуры. С его помощью, извлекать из глины будет куда безопаснее. Сделайте графитовую смесь.

4.      Настаёт основной этап. Достаньте вашу металлическую бочку. Выложите туда смесь порошков, которые получили на предыдущем шаге. Откройте кран, залейте смесь в металлической бочке водой. Смесь нужно увлажнить для того, чтобы электрический ток, пущенный через бочку, свободно проходил насквозь. Также, при помощи воды, мы можем значительно взять и ускорить процесс извлечения алюминия у смеси порошков.

5.    Следующий шаг — самый ответственный. Наконец-то задействуем электричество при помощи сварочного аппарата. Настоятельно стоит принять меры предосторожности! Конечно, стоит надеть резиновые перчатки, сапоги. Так избежите возможных ожогов электрическим током сварочного аппарата. Соблюдая обычные правила безопасности, подключите сварочный аппарат к металлической бочке. Стоит подождать от пятнадцати до тридцати секунд, пока электричество проходит через металлическую бочку. За это время кислород от нагрева электрическим током покинет порошок вместе с водой. Уберите сварочный аппарат.

алюминий из глины 2

Результат

Не спешите взять металл у бочки! Он сейчас очень раскалён контактом сварочным аппаратом.  Стоит пойти отдохнуть, позволить металлу остыть. Обычно трёх часов с лихвой хватает, чтобы нагретая металлическая бочка охладились. Полтонна сырья обычно даёт четверть тонны алюминия. Полученный из бокситов металл, конечно, вряд ли будет чистым настолько же, насколько получают на специальных предприятиях по очистке руды. У нас по итогу выйдет некая смесь, у которой доля алюминия будет от 80% до 90% примерно. Такой чистоты достаточно, чтобы отнести полученное ближайшему пункту, куда принимают цветные металлов да получить деньги за это. Правда, полной стоимости,  конечно там никто не заплатит, но даже при таком условии за месяц заработать под сотню тысяч рублей  реально.

Теперь  известна буквальным образом находившаяся на поверхности технологии химии. А вообще, подумайте. Готовы ли взять риск или для вас привычная скучная каждодневная рутина официального трудоустройства приятнее, чем открывшаяся перспектива? Решайте.

Читайте также:  Можно ли в налоговой получить патент

Источник

Ответы Mail.ru: Алюминий из глины

Во многих популярных книгах по химии приводится легенда о том, что некий изобретатель, имя которого история не сохранила, принес императору Тиберию, правившему Римом в 14–27 н. э. , чашу из металла, напоминающего цветом серебро, но более легкого. Этот подарок стоил жизни мастеру: Тиберий приказал казнить его, а мастерскую уничтожить, поскольку боялся, что новый металл может обесценить серебро в императорской сокровищнице.

Эта легенда основана на рассказе Плиния Старшего, римского писателя и ученого, автора Естественной истории – энциклопедии естественнонаучных знаний античных времен. Согласно Плинию, новый металл был получен из «глинистой земли» . А ведь глина действительно содержит алюминий.

Современные авторы почти всегда делают оговорку, что вся эта история – не более чем красивая сказка. И это не удивительно: алюминий в горных породах чрезвычайно прочно связан с кислородом, и для его выделения необходимо затратить очень много энергии. Однако в последнее время появились новые данные о принципиальной возможности получения металлического алюминия в древности. Как показал спектральный анализ, украшения на гробнице китайского полководца Чжоу-Чжу, умершего в начале III в. н. э. , сделаны из сплава, на 85% состоящего из алюминия. Могли ли древние получить свободный алюминий? Все известные способы (электролиз, восстановление металлическим натрием или калием) отпадают автоматически. Могли ли в древности найти самородный алюминий, как, например, самородки золота, серебра, меди? Это тоже исключено: самородный алюминий – редчайший минерал, который встречается в ничтожных количествах, так что древние мастера никак не могли найти и собрать в нужном количестве такие самородки.

Однако возможно и другое объяснение рассказа Плиния. Алюминий можно восстановить из руд не только с помощью электричества и щелочных металлов. Существует доступный и широко используемый с древних времен восстановитель – это уголь, с помощью которого оксиды многих металлов при нагревании восстанавливаются до свободных металлов. В конце 1970-х немецкие химики решили проверить, могли ли в древности получить алюминий восстановлением углем. Они нагрели в глиняном тигле до красного каления смесь глины с угольным порошком и поваренной солью или поташом (карбонатом калия) . Соль была получена из морской воды, а поташ – из золы растений, чтобы использовать только те вещества и методы, которые были доступны в древности. Через некоторое время на поверхности тигля всплыл шлак с шариками алюминия! Выход металла был мал, но не исключено, что именно этим путем древние металлурги могли получить «металл 20 века» .

Свойства алюминия. По цвету чистый алюминий напоминает серебро, это очень легкий металл: его плотность всего 2,7 г/см3. Легче алюминия только щелочные и щелочноземельные металлы (кроме бария) , бериллий и магний. Плавится алюминий тоже легко – при 600° С (тонкую алюминиевую проволоку можно расплавить на обычной кухонной конфорке) , зато кипит лишь при 2452° С. По электропроводности алюминий – на 4-м месте, уступая лишь серебру (оно на первом месте) , меди и золоту, что при дешевизне алюминия имеет огромное практическое значение. В таком же порядке изменяется и теплопроводность металлов. В высокой теплопроводности алюминия легко убедиться, опустив алюминиевую ложечку в горячий чай. И еще одно замечательное свойство у этого металла: его ровная блестящая поверхность прекрасно отражает свет: от 80 до 93% в видимой области спектра в зависимости от длины волны. В ультрафиолетовой области алюминию в этом отношении вообще нет равных, и лишь в красной области он немного уступает серебру (в ультрафиолете серебро имеет очень низкую отражательную способность) .

Чистый алюминий – довольно мягкий металл – почти втрое мягче меди, поэтому даже сравнительно толстые алюминиевые пластинки и стержни легко согнуть, но когда алюминий образует сплавы (их известно огромное множество) , его твердость может возрасти в десятки раз.

Источник

Алюминий: «серебро» из глины

В 1855 г. на Всемирной выставке в Париже рядом с изделиями Севрской фарфоровой фабрики лежало несколько небольших слитков и тонких полос серебристобелого металла.

Это были куски первого алюминия, который тогда называли «серебром из глины». Ценился он наравне с золотом и платиной. Император Франции Наполеон III и вся королевская семья пользовались за обедом алюминиевыми ложками. Название металлу дал немецкий химик Велер, разработавший способ получения этого металла в виде маленьких гранул или зерен. Слово «алюминий» происходит от греческого «алюмен», что означает «вяжущий» или «квасцы». По свидетельству древнегреческого историка Геродота, еще в V в. до нашей эры (а возможно, и раньше) при крашении шерстяных тканей применяли в качестве протравы какой-то минерал, который назывался алюменом. Квасцы были знакомы и русским ремесленникам, которые в XIII—XIX вв. пользовались ими для крашения тканей и выделки сафьяна. Квасцовой землей в XVIII в. русские химики называли глинозем.

Алюминий — самый распространенный металл. По содержанию в земной коре (7,45%) он занимает третье место среди всех химических элементов. Насчитывается свыше 250 минералов, в состав которых входит алюминий. Большая часть алюминиевых минералов, слагающих горные породы, — алюмосиликаты, т. е. соединения алюминия с кислородом и кремнием.

Алюмосиликатам было суждено сыграть исключительно важную роль в развитии цивилизации, но еще более важным материалом оказались продукты выветривания алюмосиликатов — глины. Им обязаны своим происхождением гончарные изделия древних, современный художественный и технический фарфор, главный строительный материал — кирпич.

Читайте также:  Получили квартиру по очереди можно ли ее продать

Драгоценные камни — это тоже содержащие некоторые примеси соединения алюминия. Основа рубина, или окиси алюминия, — корунд с незначительной примесью хрома. Сапфир — это тот же корунд, только вместо хрома в нем имеется титан. Голубовато-зеленые аквамарины обязаны своим происхождением алюмосиликату бериллия. Бирюза — алюмосиликат меди; темно-красные гранаты — кристаллы железистого алюминия; нежные лейкосапфиры — прозрачные кристаллы безводной окиси алюминия.

Из многочисленных алюминиевых минералов, встречающихся в природе, лишь немногие могут быть использованы для промышленного производства алюминия. Основным сырьем для его получения служит глинозем (окись алюминия), входящий в состав минералов (бемит, диаспор, гидраргилит), глин, слюды, полевых шпатов, бокситов. Последние получили свое название от деревни Бокс на юге Франции, где в 1821 г. были открыты крупные залежи породы буровато-красного цвета, по внешнему виду похожей на глину, но не обладающей пластичностью. Анализ породы показал, что в ней содержится до 60% глинозема с примесью окислов железа и кремния и других веществ.

Первые изделия из алюминия, появившиеся во Франции в середине 60-х годов прошлого века, ценились так дорого, что почти не находили потребителя. Стоимость 1 кг алюминия превышала 1000 золотых рублей. Но уже к концу 60-х годов, после того как французский химик Девиль организовал производство металлического алюминия из хлористого алюминия, она уменьшилась почти в 10 раз.

Однако способ Девиля, основанный на вытеснении алюминия расплавленным «металлическим» натрием, был дорог, сложен и не давал возможности получать чистый металл. Поиски более совершенных методов производства алюминия натолкнули ученых на мысль использовать в качестве сырья гренландский криолит, который начиная с 1854 г. стали ввозить в Европу в больших количествах. Поскольку минерал представляет собой двойную соль (фторид алюминия и натрия), можно было надеяться получить металлический алюминий, восстанавливая криолит, а также и хлорид алюминия металлическим натрием.

Наиболее эффективный метод получения алюминия из криолита предложил русский ученый Н. Н. Бекетов, тогда профессор Харьковского университета. Спустя два года после сообщения Бекетова по его способу стали работать алюминиевые заводы во Франции и Германии.

Советский Союз располагает богатейшими месторождениями бокситов на Урале, в Башкирской АССР, Казахстане. Еще в 1882 г. А. Е. Бренн обнаружил залежи бокситов в районе реки Воложбы, неподалеку от города Тихвина (ныне Ленинградская область). Царские чиновники не обратили внимания на сообщение Бренна, и алюминий продолжали ввозить из-за границы. Лишь в 1915 г. в связи с резко возросшим спросом на алюминий для военных целей были начаты усиленные поиски алюминиевых руд в стране. Военное ведомство объявило даже крупную денежную премию (50 тыс. рублей) тому, «кто укажет местонарождение бокситов». На призыв правительства откликнулись геологи, краеведы, старатели. Спустя год инженер П. Н. Тимофеев установил наличие в Тихвинском районе значительного месторождения бокситов, которое в советские годы стало основной рудной базой алюминиевой промышленности. В 1931 г. в районе города Серова на Северном Урале были найдены бокситы еще лучше тихвинских, а несколько позднее были открыты крупные месторождения богатых глиноземом бокситов в других районах Урала.

В конце 1916 г. В. А. Аршинов предложил использовать для производства алюминия нефелиновые руды, которыми так безмерно богата наша страна. Наиболее крупные нефелиновые месторождения находятся в Хибинском массиве (Кольский полуостров), в Красноярском крае и Кемеровской области.

Первая выдача алюминия из нефелиновой руды состоялась на Хибинском месторождении, разведанном в 1921 г. геологической экспедицией под руководством академика А. Е. Ферсмана. Производство было организовано следующим образом. В гранатовые тигли насыпали 21 кг измельченного в порошок «ледяного камня» и 3 кг чистого магния. Тигли плотно закрывали и помещали в коксовую печь, где они нагревались до белого каления. Спустя полтора часа тигли вынимали из печи и охлаждали. Кусочки алюминия, выделившиеся из затвердевшей массы, переплавляли в слитки в небольшом графитовом тигле.

Изучая процессы вытеснения металлов из их солей, Бекетов заметил, что алюминий полностью вытесняется из криолита металлическим магнием. «Глиний (алюминий) восстанавливается магнием, — писал он в своей докторской диссертации, — из своего фтористого соединения (из криолита, искусственно мною приготовленного) в чем я убедился особенным опытом».

Эти наблюдения послужили основой для создания промышленного способа получения алюминия, и этот способ использовался в Европе более 25 лет. Только в 90-х годах прошлого века, после того как в Петербурге на Тентелевском химическом заводе (теперь «Красный химик») К. И. Байер предложил получать алюминий из более дешевого глинозема, бекетовский метод утратил свое промышленное значение.

Разрабатывая способ получения чистого гидрата окиси алюминия для протравы ситцевых тканей, Байер сделал два важных открытия, которые затем и легли в основу его метода производства алюминия. Он заметил, что раствор алюмината натрия в присутствии затравки свежеосажденного гидрата глинозема самопроизвольно разлагается с выделением окиси алюминия и что глинозем можно извлекать из бокситов путем обработки их щелочью под давлением. Байеровокий способ получения чистого глинозема применяется до сих пор.

Спустя пять лет после опубликования Байером своих патентов инженер Д. А. Пеняков запатентовал другой способ производства глинозема из бокситов. Дорогостоящие щелочи — кальцинированную соду и едкий натр — он заменил глауберовой солью. Смесь мелкоизмельченного боксита, глауберовой соли и угля подвергалась спеканию в трубчатой вращающейся печи при 1200° С. Алюминат натрия выщелачивали из снека водой, затем алюминатный раствор карбонизировали (продувая через него окись углерода), в результате чего гидроокись алюминия выпадала в осадок, а в растворе оставалась сода. Сернистый газ, выделявшийся при спекании смеси, использовался для получения из поваренной соли новых порций глауберовой соли и соляной кислоты.

Читайте также:  Можно ли получить пособие на ребенка если мать не работает

Способ Пенякова не нашел применения в России, но был немедленно использован за границей. В Бельгии построили глиноземный завод, который работал до 1914 г., пока не был разрушен немецкими войсками, оккупировавшими страну.

Особо ценный вклад в развитие производства алюминия внесли русские ученые В. П. Ильинский и П. П. Федотьев, создавшие теорию электрометаллургии алюминия, теорию процессов, происходящих при извлечении этого металла из руд с помощью электрического тока. В 1912 г. вышла в свет книга Федотьева «Экспериментальное исследование по электрометаллургии алюминия», которая сразу же была переведена на многие иностранные языки и стала настольной книгой металлургов всего мира.

Разработанные русскими учеными промышленные способы производства алюминия не смогли найти практического приложения в царской России, хотя правительство с самого начала первой мировой войны всячески поощряло разведку алюминиевых руд и пыталось организовать алюминиевую промышленность. Но этому препятствовало отсутствие нужного количества электроэнергии — основы электрометаллургии алюминия. Мешали этому начинанию и иностранные концерны, продававшие алюминий России и не желавшие терять свои барыши.

Лишь при Советской власти были созданы предпосылки для развития отечественной алюминиевой промышленности. Решающую роль здесь сыграл разработанный В. И. Лениным план электрификации страны (ГОЭЛРО). В 1925 г. первенец этого плана — Волховская ГЭС — дал ток и спустя несколько лет стал энергетической базой Волховского алюминиевого завода. Прошло еще семь лет, и Днепрогэс стал снабжать электроэнергией второй алюминиевый завод в Союзе — Днепровский. В конце 1934 г. началось строительство крупного алюминиевого комбината на Урале.

В 1940 г. было принято решение об усиленном развитии алюминиевой промышленности, намечена постройка глиноземных и алюминиевых заводов на Урале, в Кузбассе, Закавказье, Мурманской области, Карелии.

Алюминиевый завод совсем непохож на обычные металлургические предприятия, где из железной руды добывают чугун и переплавляют его в сталь. Сердце алюминиевого завода — электролизный цех. Вдоль широких пролетов в несколько рядов установлены на каменном фундаменте большие железные ящики — электролизные ванны. Они выложены внутри графитом или угольными плитами, которые служат катодами. Сверху в ванны спущены массивные угольные пластины — аноды. Электролизные ванны наполняют окисью алюминия с добавкой небольшого количества криолита, который снижает температуру плавления. При включении тока криолит начинает плавиться и растворяет окись алюминия.

Электролиз ведется при температуре около 1000° С. На аноде выделяется кислород, который окисляет уголь в окись углерода. На дне ванны, на катоде, собирается расплавленный алюминий. Несколько сот килограммов металла дает в сутки каждая ванна.

В 60-х годах советские металлурги одержали выдающуюся победу: на Волховском алюминиевом комбинате впервые стали получать алюминий из нефелинов. А совсем недавно вступил в строй крупнейший в мире Ачинский комбинат, построенный на базе Килшалтырского нефелинового месторождения.

Отходы, получающиеся при флотации апатитовых руд и переработке их на удобрения, называют нефелиновыми хвостами. Прежде чем получить из хвостов алюминий, их надо обогатить, получить концентрат, содержащий не менее 30% глинозема. Из нефелинового концентрата можно получить в два раза больше алюминия, чем из бокситов, но извлечь металл из концентрата гораздо труднее, чем из бокситов. Здесь на помощь металлургам пришли высокая температура и химические реакции.

Нефелиновый концентрат дробят на мелкие кусочки и смешивают с раздробленным известняком. Смесь, смоченную водой, размалывают на мельницах и полученную кашицу, пульпу, загружают во вращающуюся печь — длинный (60—180 м) железный барабан. Пульпа поступает в барабан с холодного конца, а навстречу ей с другого конца движется струя мелкоизмельченного горящего угля, температура которого достигает 1300—1500° С. Сначала испаряется вода, затем известняк разлагается на окись кальция и углекислый газ; последний отсасывается из печи.

Молекулы извести вступают в реакцию с молекулами нефелина и разрушают их. Образуется спек — плотная масса, состоящая главным образом из силиката кальция и алюминатов натрия и калия. Они жадно соединяются с молекулами кремнезема. Одновременно окись алюминия реагирует с окислами калия и натрия и превращается в алюминаты этих металлов.

Спек охлаждают до 100° С и размалывают на мельницах в порошок, который затем засыпают в большие чаны и заливают раствором соды. Алюминаты натрия и калия растворяются в соде, а силикат кальция остается на дне чана. Алюминатные растворы отделяют от осадка в специальных аппаратах. Осадок промывают и направляют в цех, где из него приготовляют цемент.

Очищенные растворы алюминатов перекачивают в аппараты-карбонизаторы и обрабатывают углекислым газом. В осадок выпадает гидрат окиси алюминия — белый пушистый порошок, а в растворе остаются поташ и сода. Гидрат окиси алюминия прокаливают во вращающихся печах, где он, теряя воду, превращается в глинозем. Соду и поташ снова используют для растворения соединений алюминия, содержащихся в нефелине.

Извлечение окиси алюминия из нефелиновых хвостов расширяет сырьевую базу производства металла. У нас в стране запасы нефелиновых руд во много раз больше запасов бокситов.

Источник