Можно ли использовать теорему синусов в прямоугольном треугольнике

Теорема Косинусов и Синусов треугольника. Формулы и примеры

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Формула Теоремы Пифагора:

a2> + b2> = c2>, где a, b — катеты, с — гипотенуза.

Из формулы следует: a2 = c2 — b2

К полученному выражению прибавим и отнимем квадрат второго катета:

Но так как b = c * cos α, то

Эту формулу мы получили для катетов в прямоугольном треугольнике, но аналогичная связь между стороной а и косинусом противолежащего угла справедлива и для произвольного треугольника.

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

a2 = b2 + c2 — 2bc cos α

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

BC2 = (x2 — x1)2 + (y2 — y1)2

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

BC2 = a2 = (b cos α — c)2 + b2sin2α = b2cos2α + b2sin2α — 2bc cos α + c2 = b2(cos2α + sin2α) — 2bc cos α + c2

cos2α + sin2α = 1основное тригонометрическое тождество.

b2(cos2α + sin2α) — 2bc cos α + c2 = b2 + c2 — 2bc cos α

Что и требовалось доказать.

Следствие из теоремы косинусов: теорему косинусов также можно использовать для определения косинуса угла треугольника:

  • Когда b2 + c2 — a2 > 0, угол α будет острым.
  • Когда b2 + c2 — a2 = 0, угол α будет прямым.
  • Когда b2 + c2 — a2 < 0, угол α будет тупым.

Запоминаем

Когда угол α прямой, то теорема косинусов превращаеся в теорему Пифагора.

Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

  • AD = b * cos α,
  • DB = c – b * cos α.

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

  • h2 = b2 — (b * cos α)2
  • h2 = a2 — (c – b * cos α)2

Приравниваем правые части уравнений:

  • b2 — (b * cos α)2 = a2 — (c — b * cos α)2

либо

  • a2 = b2 + c2 — 2bc * cos α

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

  • b2 = a2 + c2 — 2ac * cos β;
  • c2 = a2 + b2 — 2ab * cos γ.

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

a2 = b2 + c2 — 2bc cos α

b2 = c2 + a2 — 2ca cos β

c2 = a2 + b2 — 2ab cos γ

Таким образом, теорема косинусов обобщает теорему Пифагора. Закон косинуса может быть использован для любого вида треугольника.

Описание формулы косинуса угла из теоремы косинусов

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Аналогично:

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Предел изменения косинуса: -1 < cos α < 1.

Предел изменения синуса: 0 < sin α ≤ 1.

  • Если cos α > 0, то α ∈ (0°;90°)
  • Если cos α < 0, то α ∈ (90°;180°)
  • Если cos α = 0, то α = 90°

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

Как решаем:

  1. Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
    Из треугольника АВС найдем cos B:
  2. Из треугольника СМВ по теореме косинусов найдём СМ:

Ответ: СМ = √33.

Пример 2. Дан треугольник АВС, в котором a+ b2 < c2. Доказать, что ∠C — тупой угол.

Как доказываем:

  1. Для доказательства нужно вспомнить теорему косинусов для угла ∠C: 
  2. Так как a2  + b2 < c2, то cos C < 0, следовательно, ∠C — тупой.
Читайте также:  Можно ли использовать просроченную краску для волос

Что и требовалось доказать.

Эта задача нам показала, что с помощью теоремы косинусов можно определить тупой угол или острый.

  • Если c2 = a2 + b2, то ∠C = 90°.
  • Если c2 < a2 + b2, то ∠C — острый.

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики в онлайн-школу Skysmart. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.

Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. Приходите на бесплатный вводный урок математики вместе с ребенком и попробуйте сами!

Источник

Теорема синусов. Формулы и доказательства

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Формула теоремы синусов:

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Из этой формулы мы получаем два соотношения:

  1. На b сокращаем, синусы переносим в знаменатели:

  2. bc sinα = ca sinβ

Из этих двух соотношений получаем:

Теорема синусов для треугольника доказана.

Эта теорема пригодится, чтобы найти:

  • Стороны треугольника, если даны два угла и одна сторона.
  • Углы треугольника, если даны две стороны и один прилежащий угол.

Чтобы подружиться с синусом и применять теоремы в нужный момент, запишите ребенка на бесплатный вводный урок математики в онлайн-школу Skysmart.

Ученики решают задачки в интерактивном формате, отслеживают прогресс в личном кабинете и чувствуют себя увереннее на контрольных и экзаменах в школе.

Доказательство следствия из теоремы синусов

У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

где R — радиус описанной около треугольника окружности.

Так образовались три формулы радиуса описанной окружности:

Основной смысл следствия из теоремы синусов заключен в этой формуле:

Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

Для доказательства следствия теоремы синусов рассмотрим три случая.

1. Угол ∠А = α — острый в треугольнике АВС.

Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

BA1 = 2R, где R — радиус окружности

α = 2R sinα

Следовательно: R = α/2 sinα

Для острого треугольника с описанной окружностью теорема доказана.

2. Угол ∠А = α — тупой в треугольнике АВС.

Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

Следовательно, ∠А1 = 180° — α.

Вспомним свойство вписанного в окружность четырёхугольника:

Также известно, что sin(180° — α) = sinα.

В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

α = 2R sin (180° — α) = 2R sinα

Следовательно: R = α/2 sinα

Для тупого треугольника с описанной окружностью теорема доказана.

Часто используемые тупые углы:

  • sin120° = sin(180° — 60°) = sin60° = 3/√2;
  • sin150° = sin(180° — 30°) = sin30° = 1/2;
  • sin135° = sin(180° — 45°) = sin45° = 2/√2.

3. Угол ∠А = 90°.

В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

Следовательно:

Для прямоугольного треугольника с описанной окружностью теорема доказана.

Теорема о вписанном в окружность угле

Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

Формула теоремы о вписанном угле:

Следствие 1 из теоремы о вписанном в окружность угле

Вписанные углы, опирающиеся на одну дугу, равны.

∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

Если мы возьмём точки A1, А2,…,Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

Следствие 2 из теоремы о вписанном в окружность угле

Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

Следствие 3 из теоремы о вписанном в окружность угле

Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

∠A + ∠C = 180°

Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

Следовательно: α + γ = 180°.

Поэтому: ∠A + ∠C = 180°.

Следствие 4 из теоремы о вписанном в окружность угле

Синусы противоположных углов вписанного четырехугольника равны. То есть:

sinγ = sin(180° — α)

Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

Примеры решения задач

Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

Как решаем:

  • Согласно теореме о сумме углов треугольника:

    ∠A + ∠B + ∠C = 180°

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:

Ответ: AC = 12.

Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

Как решаем:

В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

Следовательно:

Значит x = sin (4/5) ≈ 53,1°.

Ответ: угол составляет примерно 53,1°.

Запоминаем

Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

>

Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

>

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.

Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем.

Источник

Теорема синусов. Визуальный гид (2020) | YouClever

Привет! 

Существуют две теоремы, свзанные с тригонометрией, которые могут оказать тебе огромную услугу в решении задач.

Особенно в решении задач продвинутого уровня, за которые можно получит неплохие баллы на экзамене!

О теореме косинусов можешь прочитать в другой статье, а здесь мы поговорим про теорему синусов. Легкую и полезную.

Поехали!

ШПОРА ПО ТЕОРЕМЕ СИНУСОВ

Для любого ( displaystyle Delta ABC):

( displaystyle frac{a}{sin angle A}=frac{b}{sin angle B}=frac{c}{sin angle C}=2R)

(здесь ( displaystyle R) – радиус описанной окружности)

Что же нам сообщает теорема синусов? Вероятнее всего, что-нибудь о синусах, не правда ли? Давай сформулируем.

Для любого ( displaystyle Delta ABC)

( displaystyle frac{a}{sin angle A}=frac{b}{sin angle B}=frac{c}{sin angle C}=2R)

(здесь ( displaystyle R) – радиус описанной окружности).

Первый вопрос, который возникает при взгляде на эту формулу: «Но при чём же здесь вообще ( displaystyle R)?». Вот давай именно с него и начнём.

НЕ ПРОПУСТИ!

Автор этого учебника, Алексей Шевчук, проводит бесплатные вебинары по самым сложным задачам ЕГЭ по математике и информатике.

На вебинарах все будет еще понятнее. Шорткаты, лайфхаки, разбор «капканов» — все там.

Регистрируйся здесь и приходи!

Тебе уже известно, что около каждого треугольника можно описать окружность. Мы это и сделаем. А потом проведём диаметр ( displaystyle BO).

Пусть этот диаметр пересекает окружность в точке ( displaystyle K). Давай рассмотрим ( displaystyle Delta BKC). Что же это за треугольник?

Ну, конечно же, прямоугольный, ведь в ( displaystyle Delta BKC) угол ( displaystyle C) опирается на диаметр ( displaystyle BKquadRightarrow quadangle C=90{}^circ ) (вспоминаем тему «Окружность. Вписанный угол»).

Но и кроме того, ( displaystyle angle K) в ( displaystyle Delta BKC) равен ( displaystyle angle A) в ( displaystyle Delta ABC), потому что эти углы опираются на одну дугу ( displaystyle BC) (опять вспоминаем ту же тему…).

А теперь просто запишем выражение для синуса ( displaystyle angle K) в прямоугольном ( displaystyle Delta BKC) ( displaystyle sin angle K=frac{a}{BK}).

Но ведь ( displaystyle BK) – диаметр ( displaystyle quadRightarrowquad BK=2R), и ( displaystyle sin angle K=frac{a}{2R}).

Вспомним, что ( displaystyle angle K=angle A) и получим ( displaystyle sin angle A=frac{a}{2R}quadRightarrowquad frac{a}{sin angle A}=2R).

Вот и всё! Провели одну линию, рассмотрели один прямоугольный треугольник – и доказательство готово.

Но как же быть с углами ( displaystyle B) и ( displaystyle C)? – спросишь ты. Да, точно также. Давай рассмотрим ( displaystyle angle B).

Теперь проведём диаметр ( displaystyle AO) и соединим точки ( displaystyle K) и ( displaystyle C).

Как-то тут немного по-другому получается, ты заметил? ( displaystyle Delta AKC), конечно, прямоугольный, так как ( displaystyle angle C) опирается на диаметр ( displaystyle AK).

Но теперь ( displaystyle angle K+angle B=180{}^circ ), потому что четырехугольник ( displaystyle ABCK) – вписанный. (Надеюсь, ты ещё помнишь, что для угла ( displaystyle A) у нас было ( displaystyle angle A=angle K).) В чём же дело?

Ну, просто ( displaystyle angle B) – тупой, поэтому и получилось такое различие. Но, к счастью, для теоремы синусов это различие не играет роли. Сейчас мы в этом убедимся.

Итак, запишем выражение для синуса ( displaystyle angle K) в прямоугольном ( displaystyle Delta AKC).

( displaystyle sin angle K=frac{b}{AK}); то есть ( displaystyle sin angle K=frac{b}{2R})

Но ( displaystyle angle B=180{}^circ -angle KRightarrow sin angle B=sin angle K) (читаем или вспоминаем формулы приведения в тригонометрии.)

Значит, ( displaystyle sin angle B=frac{b}{2R}quadRightarrowquad frac{b}{sin angle B}=2R).

Ну вот, мы рассмотрели и острый, и тупой угол. Если ты все ещё беспокоишься об угле ( displaystyle C), то проделай все те же действия самостоятельно и убедись, что все получается.

Обрати внимание, что мы доказали «четверное равенство».

( displaystyle frac{a}{sin angle A}=frac{b}{sin angle B}=frac{c}{sin angle C}=2R)

в такой последовательности:

( displaystyle left{ begin{array}{l}frac{a}{sin angle A}=2R\frac{b}{sin angle B}=2Rhspace{13mm}Rightarrowquad frac{a}{sin angle A}=frac{b}{sin angle B}=frac{c}{sin angle C}=2R\frac{c}{sin angle C}=2Rend{array} right.)

А теперь внимание! Обсудим пользу этой теоремы.

Понимаешь, теорема синусов – единственный разумный способ для нахождения радиуса описанной окружности.

Почему я так говорю? А ты вспомни сам: ну где ещё в формулах участвует ( displaystyle R)?! Возможно, правда, ты знаком с формулой ( displaystyle S=frac{abc}{4R}), то есть ( displaystyle R=frac{abc}{4S}quad), но!

Давай – ка сравним:

Из теоремы синусов: ( displaystyle R=frac{a}{2sin angle A})

Из формулы площади: ( displaystyle R=frac{abc}{4S}).

Чувствуешь разницу? В первой формуле нужно знать только одну сторону и один угол, а во второй формуле – все стороны, да ещё и площадь! Ну и какую формулу легче применить?

А кроме того, открою тебе маленький секрет: формула ( displaystyle S=frac{abc}{4R}) как раз и доказывается именно с применением теоремы синусов. Чтобы убедиться в этом, читай темы «Площадь круга и его частей», «Площадь треугольника и четырехугольника».

Итак, теорема синусов бывает полезна и для нахождения синуса какого – то угла, если известны две стороны и один угол, но в основном теорема синусов – главный инструмент для нахождения радиуса описанной окружности. Запомни это очень хорошо!

Источник

Синус, косинус и тангенс ?

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин 🙂

Развёрнутый, прямой, острый и тупой углы

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза и катеты

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Синус, косинус, тангенс и котангенс

Давайте докажем некоторые из них.

  1. Сумма углов любого треугольника равна . Значит, сумма двух острых углов прямоугольного треугольника равнa .
  2. С одной стороны, как отношение противолежащего катета к гипотенузе. С другой стороны, , поскольку для угла  катет а будет прилежащим.Получаем, что . Иными словами, .
  3. Возьмем теорему Пифагора: . Поделим обе части на : Мы получили основное тригонометрическое тождество.
  4. Поделив обе части основного тригонометрического тождества на , получим: Это значит, что если нам дан тангенс острого угла , то мы сразу можем найти его косинус. Аналогично,

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

Можно ли использовать теорему синусов в прямоугольном треугольнике

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от  до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике угол  равен , . Найдите .

Задача решается за четыре секунды.

Поскольку , .

2. В треугольнике угол  равен , , . Найдите .

Можно ли использовать теорему синусов в прямоугольном треугольнике

Имеем:

Отсюда

Найдем  по теореме Пифагора.

Задача решена.

Часто в задачах встречаются треугольники с углами  и  или с углами  и . Основные соотношения для них запоминайте наизусть!

Прямоугольные треугольники с углами 30, 60, 90 и 45, 45, 90 градусов

Для треугольника с углами  и  катет, лежащий напротив угла в , равен половине гипотенузы.

Треугольник с углами  и  — равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Источник