Можно ли использовать светодиоды для растений
Освещение растений белыми светодиодами — проверочная работа
Эта статья написана под впечатлением от другой статьи на GT, о чем говорит похожее название. Дело в том, что этой темой я интересуюсь лет двенадцать и потому статья iva2000 вызвала довольно живой отклик в моем сознании. Результаты и выводы меня почти убедили, но остались моменты, с которыми я не согласен. Решил всё пересчитать и так как результат получился довольно объемный, я решил написать его в виде отдельной статьи, а не комментария.
Прочитав заголовок и вступление, я был настроен критически. Еще бы! Я сам производил расчеты, куча людей производит и использует специальные фитолампы (не только светодиодные — посмотрите на люминесцентные светильники в любом цветочном магазине!), а тут некто заявляет, мол, всё это туфта, белые светодиоды не хуже. Но ознакомившись до конца, я свое мнение изменил и понял что в этом мнении есть существенная доля истины, но надо разбираться… Всем кто не читал эту статью — убедительная просьба ознакомиться для лучшего понимания, т.к. для сокращения объема и исключения дублирования информации я буду только ссылаться на данные указанной статьи, но не повторять их. Остальные же — давайте продолжим!
Итак, сначала, что же мне показалось спорным.
1. В указанной статье приводится кривая фотосинтетической активности света McCree, которая означает прибавку биомассы растением при освещении его светом узкой полосы, но почему-то отметается её значение вовсе под предлогом, что «в широкой полосе разница будет незначительной). В разделе „Результаты анализа спектров серийных белых светодиодов“ под пунктом 3 и вовсе приведена формула расчета энергетической ценности света с использованием ДВУХ интересных параметров — это ɳ — световая отдача в лм/Вт и Ra — индекс цветопередачи.
Обе этих величины имеют жесткую привязку к другой кривой, которая называется „фотопической“. Это кривая чувствительности человеческого глаза к свету. Чтобы не быть голословным, посмотрим на картинку:
Они едва ли похожи друг на друга, верно? Поясню, что люмены измеряются датчиком, имеющим чувствительность, строго соответствующую приведенной фотопической кривой. А фотосинтез осуществляется в соответствии с приведенной кривой McCree (она и есть гоафическое отображение интенсивности фотосинтеза в зависимости от длины волны). И, как вы уже заметили, кривых на рисунке две. Одна из них — нормирована к числу фотонов, а вторая к мощности излучателя, что в обсуждаемой статье даже не упомянуто. Уважаемый автор приводит кривую нормированную по числу фотонов, но не указывает этого и в дальнейшем не использует её, а использует кривую чувствительности глаза человека. Но, простите, причем здесь тогда фотосинтез? Либо не использовать никакую кривую и считать все фотоны равнозначными либо использовать ту, которая соответствует изучаемому процессу! Индекс цветопередачи же — это вообще некий виртуальный показатель, который говорит — на сколько точно будут переданы цвета (фотографии, ткани и т.п.) при освещении их данным источником света. Т.е. тоже никакого отношения к фотосинтезу не имеет. Т.е. приведенная формула является слишком грубым приближением чтобы оценить реальное качество источников со сложным спектром излучения!
Дальше-больше! Я проверил расчетные значения ФАР в мкмоль/дж, которые автор приводит в таблице с помощью приведенной им же формулы и получилось вообще черте что:
Цифры вообще не те и отличаются в разы от приведенных. Неужели автор не проверял свои же данные для статьи? Это меня никак не устроило и я сделал расчет как положено — без странных формул с не понятно откуда взятыми коэффициентами и параметрами, относящимися к другой области применения.
Для начала цифруем картинки всевозможных графиков и загоняем их в табличный процессор. Оп!
Затем делаем так. Сначала рассчитаем коэффициент фотосинтетической активности для каждого источника. Для этого для выбранного источника умножаем мощность излучения на каждой длине волны на число из графика McCree, для той же длины волны. Затем подсчитываем интеграл (сумму) мощности для исходного графика и результата перемножения. Делим второе на первое — получаем коэффициент, означающий эффективную долю излучения для данного источника (ту, которая примет участие в фотосинтезе):
Вот, уже можно сделать предварительные выводы!
1. ДНаТ — это супер для освещения растений! Эффективность его спектра достигает 79% и это для лампы, которую первоначально проектировали в общем-то не для этого, а для освещения автомагистралей и промышленных объектов.
2. Фитолампы не смотря на „специальный“ спектр не превосходят обычные белые светодиоды с цветовой температурой 4000К и не сильно лучше „холодно-белых“ 6000К.
3. Светодиоды красного (обычного) и дальнего красного вообще вне конкуренции.
4. Получается, что если хочется выжать всё из каждого ватта освещения, нужно брать обычные красные светодиоды (излучатели дальнего красного — почти в 2 раза дороже), а если хочется сэкономить в цене аппаратуры — нужно брать белые светодиоды.
Но, как я уже сказал, выводы эти предварительные и основаны только на оценке эффективности спекра источников, без учета их кпд и некоторых других моментов. Поэтому разбираемся дальше.
Что же будет, если учесть КПД источников? Данные о КПД взяты частично из статьи iva2000, а по красным светодиодам я точных данных не нашел, но в старых моих записях по данным литературы были числа меньше чем для синих светодиодов, т.к. в последнее время всё развитие технологии было направлено именно на светодиоды синего свечения, а другие оставались в хвосте прогресса.
По большому счету их цифры взяты наобум, но они в данном случае не играют основную роль, поэтому хватит об этом. И если кто-то сообщит более достоверные данные, я буду только благодарен.
Вот тут-то расстановка сил уже меняется!
Оказывается, светодиоды с CCT 4000К лучше даже ДНаТ! Причем, если для 1000 Ваттной лампы преимущество это не существенное, то для натриевых ламп малой мощности (100Вт) преимущество уже достигает 2,4 крат! А фитолампа — бесполезная трата денег — она уступает обычным белым светодиодам на 25%! Вот тебе и фитолампа!
И чтобы уже всё сделать предельно точно, считаем на фотоны по формуле:
Где h- постоянная Планка, c — скорость света.
Но число фотонов нам не нужно, поэтому чтобы перевести все в моли, делим всё на число Авогадро и умножаем на миллион для представления в микромолях.
Вот теперь можно сделать окончательные выводы:
1. ДНаТ имеет сравнимую эффективность только при использовании ламп большой мощности (600-1000Вт). Если Вы хозяин крупного тепличного хозяйства, то по совокупности эксплуатационных характеристик лампы на киловатт — Ваш выбор! Затраты на установку освещения и замену ламп будут существенно ниже, а затраты на электроэнергию приблизительно одинаковы со светодиодами. Малое количество синих лучей в спектре ламп компенсируется наоборот высоким их количеством в естественном свете, особенно зимой (цветовая температура неба достигает 15000К!) — это как раз ситуация с теплицами, когда досветка включается утром и вечером, а днем используется естественное освещение.
2. Наиболее эффективны светодиоды с цветовой температурой 4000К. 100 Ваттная светодиодная лампа дает на 43% больше фитоактивного излучения чем лампа ДНаТ той же мощности! Цена, как ни странно, тоже на стороне светодиодов — цена лампы ДНаЗ на момент написания статьи — чуть больше 1000р., в то время как светодиоды с той же мощностью на алиэкспрессе идут за 360р. (в исполнении COB — много чипов на одной подложке)! Это еще не считая балласта в обоих случаях. Если вы растите зелень на подоконнике или в гроубоксе, то белые светодиоды — вне всякой конкуренции. Достаточно один раз купить хорошие светодиоды и их обвязку и вы обеспечены отличным экономичным освещением на годы.
3. Фитолампы. Я изначально был другого мнения, но основываясь на данных о практическом использовании белых светодиодов из статьи iva2000, подтвержденных теперь собственным исследованием приходится констатировать, что они не дают никакого преимущества по энергоэффективности или по качеству выращенных растений, а всё с точностью до наоборот! Скрипач не нужен!
* Небольшое пояснение по фигурировавшим в таблицах комбинациям белых светодиодов с красными. Я для интереса рассмотрел вариант освещения, когда в дополнение к белым светодиодам дополнительно устанавливаются обычные красные или специальные с дальним красным спектром свечения (в пропорции 3:1 по мощности). Это бывает необходимо для стимуляции цветения. Если вы разводите цветочки или землянику или другие растения, у которых цветение или плодообразование является основной целью, это может быть оправдано. Если вы растите салат и петрушку, то вряд ли стоит заморачиваться — красные светодиоды дороже белых раза в 2,5, а специальные „фито“ с дальним красным — в 4 раза! Если цель — нарастить зеленой массы за минимальные деньги, лучше взять еще один или даже два белых светодиода — будет лучше и дешевле! Только не стоит загонять бедные диоды в гроб — зная любовь китайских товарищей к завышению параметров, нужно следить, чтобы при работе основание светодиодов грелось как можно меньше — позаботиться об эффективном теплоотводе и ограничивать рабочий ток. Лучше купить на 20% больше диодов и пустить на них на 20% меньший ток и таким образом в разы увеличить их время жизни, чем навалить на полную катушку и через год получить 50% первоначального светового потока и половину нерабочих корпусов!
В целом нельзя не отметить, что революция в малом растениеводстве свершилась и это не может не радовать! Ко мне сейчас едут несколько мощных светодиодов и если со свободным временем всё сложится, то в продолжении будет практический результат в дополнении к этой сугубо теоретической части.
PS: Друзья! Большое спасибо за положительную оценку моей небольшой, но я очень надеюсь полезной для всех работы! Мне интересно пообщаться на эту тему и ответить на все вопросы, по ней, в рамках объема моих знаний. Так что не стесняйтесь — заходите в обсуждение. Особенно приветствуются дополнения и ссылки на другую информацию, которые могли бы восполнить возможные пробелы в этом материале!
Источник
Светодиодная подсветка растений. Результаты собственного опыта
Нужно ли досвечивать растения зимой на окне, насколько это эффективно и как правильно это делать. Статья о собственных экспериментах и результатах многолетнего использования.
Куст земляники при подсветке.
Здравствуйте.
В этой статье я немного отойду от темы деревянных самоделок. Хочу поделиться опытом сборки и использования светодиодного освещения растений. Применяя такую подсветку уже несколько лет, я могу делать определенные выводы о её преимуществах и недостатках. Я не претендую на правильность принятых решений. Скорее это отчет о проделанной работе и возможно эта статья поможет тем, кто давно хотел бы попробовать данное освещение, но не знает с чего начать.
Скоро зима и в саду работы будут завершены, но самые активные любители выращивания растений уже прикидывают какую рассаду и сколько нужно будет посадить на следующий год. Есть еще и энтузиасты вырастить чего-либо зимой на окне в горшке – хотя бы клубнику. (Я сам такой). Поэтому как раз есть время задуматься над тем, как лучше освещать будущую рассаду. Ведь это очень важный момент. Порой приходится наблюдать, как по весне люди везут свои худые и длинные саженцы и понимаешь, что что-то пошло у них не так. А проблема именно в нехватке света. Если еще и весна поздняя – можно и вообще погубить весь труд. Я сам долгое время мучился с этой проблемой. Южный подоконник всего один. На нём этажерки с рассадой, а результат имеет «бледный вид».
Создание досветки растений, причем правильной, стало моей основной задачей. Я не биолог и могу ошибаться, ниже я расскажу о своих опытах и их результатах.
Для контроля за уровнем освещенности приобрел два индикатора. Они безусловно не так точны, как лабораторные приборы, поэтому и купил два разных, чтобы иметь что-то среднее.
Мне не требовалось численное значение освещенности, а больше сравнительные показания. Для этого они вполне подходили. Вооружившись своими приборами, я замерял освещенность на подоконнике. Все замеры и сборку светильников производил в конце зимы, как раз в момент первых посадок рассады.
Сначала для чистоты эксперимента и калибровки показаний я несколько раз замерил яркость света, выйдя на улицу в разную погоду и время суток. Оказалось, что мои приборы показывают относительно верно. Затем зашел в дом. Как и ожидалось, интенсивность света была крайне мала. Даже на южном окне в ясную погоду света было в пределах нормы только при прямом солнце, а ведь зимой световой день короткий, ясная погода бывает не каждый день, да и солнце перемещаясь освещает даже стороны подоконника по разному. Также у меня далеко не все окна выходят на юг, а там показатели были еще хуже. Возник очевидный вывод – требуется искусственная досветка.
Самым распространенным способом досветки в домашних условиях с давних времен являются лампы дневного света. Это самый доступный вариант, но имеет ряд недостатков. Вот только некоторые из них, что удалось выявить мне. Для эксперимента я взял новую лампу мощностью 36Вт белого спектра и повышенной яркости.
Вроде как должно быть все хорошо, но замерив яркость свечения на прогретой лампе с расстояния 5 см я убедился, что света НЕДОСТАТОЧНО.
Стрелка около 500 единиц. На цифровом — LOW.
Даже близко не подходим к показателям 1000 единиц (в каких единицах измеряет индикатор сказать сложно, наверно в люксах, но мне нужны были относительные показания). На солнце значение было 2000 и более. Нормальное значение прибор показал, если лампу положить прямо на датчик.
Когда лампа лежит на датчике, стрелка показывает около 1000 единиц.
Применяя блестящий отражатель на лампу я немного улучшил показания, но не на столько, чтобы остаться довольным. Во-первых я не смогу так близко располагать лампы от растений и самих ламп надо тогда очень много, во-вторых лампы со временем выгорают и их яркость заметно снижается, в третьих, что самое важное, обычные лампы дневного света дают мало света, который непосредственно нужен растениям. Этот пункт требует более детального пояснения.
Немного теории по освещению растений.
Изучив несколько статей по теории освещения растений я узнал, что в отличии от человеческого глаза, который максимально чувствителен к зеленому свету (длина волны 555 нм), растениям свет должен быть другой.
Для фотосинтеза безусловно требуется практически весь спектр видимого света, но в основном в очень незначительных количествах. Исключением составляют только свет с длиной волны 400-500нм – синий и 600-700нм – красный, который активно поглощают хлорофиллы и другие пигменты. В диапазоне синего и красного спектра усвоение может составлять до 80-90% светового излучения. Если посмотреть на график, то даже выше перечисленные диапазоны слишком большие. Разница всего в 10-20нм может стоить 20-30% КПД подсветки. Желательно получать свет в диапазоне 440-447нм, 445-450нм и 655-660нм, а остального хватит и от света из окна.
Фитолампа 18вт в стандартный плафон
Уже давно в продаже появились специальные фитолампы на стандартный плафон ламп дневного света. Светят они фиолетово-розовым цветом и многие пользователи их положительно оценили. Это безусловно лучше обычных ламп, но я провел с ними несколько экспериментов. Яркость у них тоже слабая (они тоже по 18 или 36Вт) и также со временем выгорают. Обеспечить нужную длину волны можно очень приблизительно.
Вывод – использование таких ламп лучше, чем белых, но не стоит сильно на них надеяться, хотя это самый простой вариант.
Натриевая лампа для растений
Еще одним вариантом досветки является использование натриевых фитоламп. Их можно купить разные по мощности и габаритам, но они выделяют значительное количество тепла и поэтому требуют отдельного помещения или теплицы. Установить такую лампу на подоконнике будет проблематично.
Пересмотрев разные варианты я остановился на светодиодной технологии. Это не самый дешевый вариант по изготовлению, но имеет самый высокий КПД и относительно низкое энергопотребление, а при условии досветки в течении 8-12 часов в сутки это не мало важный аргумент. Самым большим плюсом является способность светодиода выдавать световую волну заданной длины в очень узком диапазоне. (Это правда относится к хорошим и качественным маркам, а не к самым дешевым). При этом он имеет направленное излучение, что позволяет использовать его свет по максимуму.
Круглая лампа под стандартный патрон Е27.
Сейчас можно купить в специализированных магазинах или заказать через интернет готовую лампу. Для экспериментов я приобрел две китайские по 25 вт. Светят они вроде как очень ярко, но на деле потребляют всего 15.5 вт – любят китайцы преувеличить.
Светит очень ярко, но площадь освещения мала. Поднимая выше, можно увеличить площадь, но понизить освещенность.
Как показали замеры освещенности – они хороши для подсветки одного растения. Например, я использовал для куста земляники.
Поэтому я решил делать подсветку сам. Во-первых, я тогда точно буду уверен, что светодиоды нужного мне диапазона, во-вторых, габариты подсветки будут мне полностью подходить, в-третьих у меня будет возможность экспериментировать, а в-четвертых, узнав цену на комплектующие я выяснил, что половина стоимости готового изделия- это красивый алюминиевый корпус. Последнее было мне не актуально. Проводя исследования, главной задачей было убрать рассаду с подоконников и перенести в нежилой полуподвал, где уличного света практически нет совсем. Такое расположение не мешало бы для комфортного проживания. Очень малое количество естественного света накладывало еще более жесткие требования для освещения и требовало гораздо большую яркость, но это меня не пугало.
Выбор светодиодов
Светодиоды я выбрал мощностью 3 ватта.
Есть еще и по 1 ватту, ими можно обеспечить более равномерное освещение, но их надо в три раза больше, они требуют больше монтажа и габариты установки увеличиваются. Оглядываясь назад, я бы советовал использовать именно менее мощные светодиоды, но в большем количестве –неравномерность освещения от 3-ваттников заметна.
Как я говорил выше, растения требуют в основном свет определенной длины волны, но для различных растений он может немного отличаться. Кроме этого в разные периоды вегетации он требуется в разных количествах. Точного рецепта для конкретного растения похоже до сих пор не существует. В нашем городе есть НИИ, где проводят исследования в этом направлении, но пока на уровне экспериментов. Поэтому при создании такой подсветки есть огромное поле для импровизации. Могу только уточнить, что синий цвет нужен в основном для формирования корневой системы, а красный для проращивания и развития растения вплоть до плодоношения. Таким образом изменяя количество и цвет светодиодов можно получать разные результаты на одной культуре.
В качестве основных светодиодов я использовал красные с длиной волны 650-660 нм и синие 440-450нм. Кроме них для экспериментов были куплены теплые белые, красные 620-630нм и ультрафиолетовые 390-400нм. Применение дополнительных цветов на мой взгляд не дало особенных результатов, поэтому я останавливаться на них не буду, но для других культур возможно они могут дать положительный эффект. Более продвинутые системы подсветки изготавливают с переключателем режимов, где меняется количество синих светодиодов, но я не планировал круглогодичное освещение, а только на период выращивания рассады и поэтому светильники горят одним цветом постоянно, а дозировать тот или иной цвет можно перестановкой ящиков с рассадой. Оптимальное соотношение по цветам у меня получилось 1 синий к 2-3 красным.
Монтаж светодиодов
Трехватные светодиоды достаточно сильно греются и им нужен хороший радиатор. В качестве радиатора я использовал профильную алюминиевую трубу. К трубе светодиод можно закрепить специальным термоклеем или через специальную плату с алюминиевой основой. Я остановился на втором варианте.
Монтажных плат огромное разнообразие. Я пробовал разные от индивидуальной до линейки на 12 светодиодов. Самая неудачная по 3 светодиода — получаются большие промежутки.
Он требовал покупку дополнительных плат, но позволял легко менять светодиоды во время экспериментов. Платы как оказалось бывают разные как по количеству устанавливаемых на них светодиодов, так и по форме. Я использовал далеко не все их варианты. По моему мнению лучше использовать единую плату на всю длину подсветки, так как упрощает монтаж, но ограничивает с размерами светильника.
При монтаже как самих светодиодов, так и плат к радиатору необходимо использовать теплопроводную пасту. Перегрев светодиода может вызвать как снижение яркости свечения, так и полный выход его из строя. Это надо помнить как при выборе сечения радиатора, так и при пайке. Для монтажа я использовал паяльную пасту. Это не обязательно, но значительно ускоряет процесс. Паять нужно мощным паяльником. Я использовал мощностью 80 ватт. Дело в том, что платы для светодиодов специальные и в основном сделаны из алюминия с нанесением дорожек. Более слабый паяльник сразу остывает при контакте с платой, а длительный прогрев скорее приведет к перегреву светодиода, чем кратковременное касание мощным паяльником. Расстояние между светодиодами примерно 8см. Этого достаточно, чтобы разместить на алюминиевой профильной трубе 40х20мм и длиной 1 метр 12 светодиодов и при этом конструкция будет слегка теплой. (Сильно горячий радиатор будет сушить воздух вокруг и землю растениям. )
Для крепления плат к радиатору использовал клепки.
Светодиоды соединяются последовательно. Для монтажа я использовал изолированный провод сечением 0.25. Второй цельный провод можно пропустить внутри трубы.
Рабочее напряжение до 48 вольт при токе 700 мА. По правилам неплохо бы произвести изоляцию контактов. Это позволяют легко сделать специальные алюминиевые профили, но я их не использовал, так как они неудобны для экспериментов. Зеркальные отражатели ставить практически нет смысла. Светодиоды дают направленный свет и отражать получиться только отражненные лучи от земли и листьев, которых не много.
Питание подсветки
Питание трехваттных светодиодов осуществляется через специальный источник тока.
На выходе напряжение 24…48 вольт. Ток 700мА.
В отличии от обычных светодиодных линеек, где питание идет стабилизированным напряжением в нашем случае стабилизированным является ток и для этих светодиодов он составляет 700 мА. Значит наша схема не должна потреблять больше этого значения. При этом напряжение может меняться в достаточно широком диапазоне. Дело в том, что напряжение питания у светодиодов разное. Так у красных рабочее напряжение 2.2-2.6 вольт, а у синих 3.4-3.6 вольт. Таким образом набирая линейку светодиодов надо считать их суммарное напряжение (так как соединение последовательное), а ток будет постоянным. Значит при линейке в 12 светодиодов у на 8 красных и 4 синих. Получаем:
8*2.6 +4*3.6=20.8+14.4=35,2 вольта.
А если бы использовали все 12 синих, то вышло уже 43,2 вольта. Таким образом при выборе блока питания нужно учитывать общее рабочее напряжение светильника.
В интернете есть много схем для самостоятельного изготовления таких блоков питания, но мне нужно было их достаточно много и быстро, поэтому я купил готовые на разные диапазоны напряжений. Как видно из фотографии данный блок питания удовлетворяет нашим требованиям. Я делал и несколько более коротких и более длинных светильников, на них были уже другие по характеристикам блоки.
Если светодиоды правильно соединены, то после подключения блока питания светильник готов. Амперметром полезно на всякий случай проверить потребляемый ток, но с готовыми блоками питания он у меня всегда был в пределах нормы.
Светильник очень яркий и я не советую напрямую светить им в глаза. Это очень неприятно и не думаю что полезно для глаз. На подоконник шириной 30..40 см и длиной 120см нужно как минимум 2 светильника по 12 светодиодов. Угол рассеивания у стандартный трехваттных светодиодов 120 градусов. Поэтому их свет будет смешиваться даже при небольшой высоте. Существуют специальные рассеиватели, которые можно закрепить на светодиоде.
Они дают более равномерное освещение, но падает его яркость. Проведя несколько замеров я от них отказался.
Оптимальное расстояние до растений составляет около 5 см. При такой дистанции мои приборы показывают нормальную освещенность даже при отсутствии другого света.
Если использовать подсветку на подоконнике светильники можно поднять выше. Также можно увеличить высоту добавив дополнительный светильник. Таким образом можно увеличить и рабочую ширину. Так на стол шириной 80 см я устанавливал от 3 до 6 светильников на высоту около 10 см.
По мере роста растений подсветку надо приподнимать.
Очень маленькое расстояние между светодиодами и листьями могут привезти к ожогу растения.
Для удобства я из шпильки и самодельного барашка сделал регулируемые подставки. Если светильников много, то подставка более мощная с четырьмя барашками.
Для автоматизации включения и выключения подсветки установил программируемый таймер.
Даже на экране долго смотреть на свет неприятно.
Светодиодная подсветка имеет один большой недостаток. Это очень яркий малиновый свет. Долго находиться в одной комнате с такой подсветкой неприятно и ее надо закрывать. Если установка стоит на подоконнике, то с улицы подсветка тоже впечатляющая – очень яркий малиновый квадрат окна на фоне темного дома.
Мое расположение в подвале этих проблем не создает, но при поливе подсветку приходится отключать. Подсветка сильно искажает цвета и растения под ней кажутся очень темные. Но эти неудобства можно перетерпеть, так как результат очень неплохой. В первый год экспериментов я посадил часть растений на окно без подсветки (по старому способу, так как результат с подсветкой был не ясен) и для сравнения удалось сфотографировать и сравнить результаты, используя одинаковые семена и грунт.
Результаты
Первое, с чем я столкнулся при светодиодной подсветке, что семена прорастают быстро, а затем как бы не растут. На подоконнике уже вытянулись сантиметров на 5-8 а под лампами 2-3 см. Но это оказалось не страшно, так как очень сильно развиваются корни.
Рассада томатов. Под светодиодами не переростают.
Вообще рассада под светодиодами не получается длинной, но с мощной корневой системой. Так как я в основном экспериментировал на петунии, герани и томатах, то и отчетные фотографии с ними. Иногда жена даже не довольна такой высотой рассады, так как листья петуньи плотно закрывают землю и сложно поливать.
На фотографии карликовый сорт томатов.
На примере герани разница очень существенная.
Это один и тот же сорт герани, но слева рос просто на окне, а справа под светодиодами.
Если сравнивать рассаду, выращенную на подоконнике (слева) и под светодиодами (справа), внешне кажется, что это растения разных сортов, но это не так. Это точно — проверено. Отличается все, даже форма листьев.
А вот так растет петуния. Тоже одинаковый сорт.
Слева петуния росла на окне, справа под светодиодами.
Правая уже пустила боковые ветки и полностью закрывает землю. Поливать сложнее, но приходится мириться.
Сажая в грунт рассада из под светодиодов выглядит более мелкой, но очень быстро обгоняет долговязую с окна. Главное – это мощные корни.
Также был эксперимент с высокорослыми томатами, но технология требует доработки. Рассада за 3 месяца выросла сантиметров на 60 с мощными листьями. Они стали закрывать свет к нижним листьям и те не получая света стали увядать. Пришлось при посадке сильно заглублять ствол в землю. Возможно что такие сорта нельзя выращивать без бокового оконного света или просто сажать их нужно было позже.
Интересный эффект получился с большим кустом бругмансии. На зиму мы занесли растение в тот же подвал и оно стояло на полу в бочке между окном и столом со светильниками. На той стороне, что ближе к светодиодам листья быстро выросли в 2-3 раза больше, чем на стороне с окном. При этом и цвет листьев был разный – «светодиодные» гораздо более темные и сочные. К сожалению, я не додумался тогда это сфотографировать.
Для индивидуальной подсветки я сделал небольшие светильники всего на 5 светодиодов. Ими подсвечивал кусты земляники и в феврале получил первый урожай.
Земляника в феврале. На плантацию не тянет, но ради интереса получилось. .
Опылять пришлось кисточкой.
Итоги.
Эффект от светодиодной подсветки считаю очень хорошим. У меня получилось не занимать по весне все подоконники стаканами с рассадой, а собрать всю «плантацию» в подвале на удобных столах. Свет от подсветки не мешает жить. Также теперь нет запаха сырой земли в комнатах. Поливать тоже проще. Рассада получается невысокая, но крепкая и с мощными корнями. Хорошо приживается и быстро обгоняет оконных переростков.
Недостатки такой подсветки тоже есть. Некоторые я уже перечислял. Добавлю еще один — растение которое росло под светодиодами нельзя выносить из под них просто на подоконник до самой посадки в грунт. Иначе из-за недостатка света оно сразу вытягивается и даже еще сильнее, чем если бы оно росло постоянно на окне. Также достаточно большой расход электроэнергии. Что либо делать в помещении с включенной подсветкой долго невозможно – начинаешь путать цвета.
Однако в результате плюсов получаем больше чем минусов. С этим согласны и многие мои знакомые, кто также решил повторить такую подсветку, провел собственные эксперименты и теперь по другому рассаду не выращивает.
Если вы заинтересовались статьей, нажмите «палец вверх».
Чтобы проще находить мои статьи, подпишитесь на канал.
Все вопросы и замечания пишите в комментариях.
Источник